MITIGATION REPORT (FINAL)

BISHOP SITE STREAM AND WETLAND RESTORATION ANSON COUNTY, NORTH CAROLINA YADKIN RIVER BASIN CATALOGING UNITS 03040104 AND 03040105

SCO ID# 040611701A

PREPARED FOR:

RECEIVED

NCDENR - ECOSYSTEM ENHANCEMENT PROGRAM

Project Manager: Melonie Allen 1652 Mail Service Center Raleigh, North Carolina 27699-16152 OCT 2 3 7007

NC ECOSYSTEM ENHANCEMENT PROGRAM

OCTOBER 2007

MITIGATION REPORT (FINAL)

BISHOP SITE STREAM AND WETLAND RESTORATION ANSON COUNTY, NORTH CAROLINA YADKIN RIVER BASIN CATALOGING UNITS 03040104 AND 03040105

SCO ID# 040611701A

PREPARED BY:

EcoScience

DESIGN/FIRST-YEAR MONITORING FIRM: ECOSCIENCE CORPORATION

Project Manager: Jim Cooper (cooper@ecosciencenc.com)

1101 Haynes Street, Suite 101 Raleigh, North Carolina 27604 Office: (919) 828 3433

Fax: (919) 828 3518

EXECUTIVE SUMMARY

EcoScience Corporation (ESC) was retained by the North Carolina Ecosystem Enhancement Program (EEP) to provide stream and wetland restoration/enhancement design services for the Bishop Site Stream and Wetland Restoration (hereafter referred to as the Site). The Site, which is in the Yadkin River Basin (Cataloguing Units 03040104 and 03040105), is located north of Wadesboro in Anson County, North Carolina (Figure 1, Appendix A). Three separate construction areas, each confined within an EEP-owned conservation easement, comprise the approximate 200-acre Site: Camp Branch (Site A, 94.9 acres), Dula Thoroughfare (Site B, 70.8 acres), and the Unnamed Tributary (UT) to Dula Thoroughfare (Site C, 33.7 acres).

Pre-Construction Site Conditions

Prior to restoration activities, land use within the Site was primarily agricultural, with forested strips occupying low areas between cultivated fields. There are three major on-Site drainage features where restoration activities occurred: Camp Branch, Dula Thoroughfare, and the UT to Dula Thoroughfare (Sites A, B, and C, respectively). Each of these three watercourses was dredged and straightened to accommodate past agricultural land use, resulting in unstable F and G type channels (Rosgen 1996). In their pre-disturbance conditions, Camp Branch and the UT to Dula Thoroughfare were likely classifiable as C or E stream types (Rosgen 1996), while Dula Thoroughfare, due to its landscape position at the edge of the Rocky River floodplain, was likely a low-gradient backwater slough (an E or D stream type [Rosgen 1996]). The following table summarizes the pre-construction conditions of each stream.

P	re-Construction Sit	te Stream Channel	Conditions	
Stream	Stream Type (Rosgen 1996)	Drainage Area at Site (mi²)	Stream Order (per USGS)	Extent within Site (linear feet)
Camp Branch	F4/5	2.9	2 nd	5,078
Dula Thoroughfare	G5	0.4	1 st	5,230
UT to Dula Thoroughfare	G4/5	0.2	1 st	4,880

Due to the presence of hydric soil inclusions, riverine wetlands were likely adjacent to Dula Thoroughfare (Site B) in its downstream portions within the Site prior to anthropogenic channel impacts. However, channel alteration resulted in hydrologic modifications that effectively drained adjacent wetlands with the exception of those within the fringe of the channel. Headwater riverine wetlands, many of which are forested, occur elsewhere along various Site drainage features.

Restoration Plan

Stream restoration and/or enhancement activities were undertaken along Camp Branch (including an adjacent UT) (Site A), Dula Thoroughfare (Site B), and the UT to Dula Thoroughfare (Site C). In order to provide Priority 1 stream restoration along the UT to Camp Branch (Site A), an appropriately sized bankfull channel was excavated on new location within the Camp Branch floodplain. Priority 2 stream restoration was achieved along Camp Branch and the UT to Camp Branch (Site A) and Dula Thoroughfare (Site B) via floodplain and stream channel excavation on new location. Level 1 stream enhancement was achieved along the UT to Dula Thoroughfare by backfilling ditched and dredged portions of the channel, thereby returning stream flow to the adjacent, stable relic portions of the stream. Boulder sill structures were also installed in downstream portions of the UT to Dula Thoroughfare to

stabilize headcut areas. Level 2 stream enhancement was achieved in upstream portions of Camp Branch (Site A) and the UT to Dula Thoroughfare (Site C) by performing supplemental riparian plantings with the appropriate indigenous suite of species adjacent to the existing channel.

Wetland restoration adjacent to Dula Thoroughfare (Site B) were achieved by floodplain excavation and Site planting to mimic the Piedmont Bottomland Forest community described by Schafale and Weakley (1990). Wetland enhancement was also achieved in the headwaters of the UT to Dula Thoroughfare (Site C) via site planting. Exotic species removal (Chinese privet, *Ligustrum sinense*) was undertaken within forested portions of the active restoration areas at each of the three sites.

Post-Construction Site Conditions

On-Site restoration activities provided the following project totals (see Tables 1 and 2 and Figures 2 and 2A-C [Appendix A] for additional details):

• Priority 1 Stream Restoration: 403 linear feet

Priority 2 Stream Restoration: 4,640 linear feet

• Level 1 Stream Enhancement: 1,871 linear feet

Level 2 Stream Enhancement: 1,425 linear feet

• Stream Preservation: 12,918 linear feet

Riverine Wetland Restoration: 3.1 acres

Riverine Wetland Enhancement: 1.0 acres

Riverine Wetland Preservation: 7.5 acres

Numerous ecological benefits are anticipated as a result of on-Site restoration activities. Stream channel restoration will reintroduce stable bankfull dimension, pattern, and profile along restored stream reaches, which is expected to greatly enhance lotic habitat quality and stream function. Floodplain excavation adjacent to restored streams will restore the characteristic flood regime to the stream as well as provide a lateral hydrologic input to restored wetland areas along the Dula Thoroughfare (Site B) floodplain. Restored and enhanced wetland areas will help to improve water quality via nutrient removal, increase local vegetative biodiversity, provide wildlife habitat, and serve as a forested corridor, linking the Site with adjacent forested areas.

Monitoring Plan

In order to ensure the Site meets regulatory stream and wetland restoration/enhancement monitoring criteria, each parameter on-Site will be monitored annually for five (5) years or until success criteria has been achieved. Refer to Figures 3A-C (Appendix A) and Section 3.0 (Monitoring Plan) of this Mitigation Report for details.

Along Camp Branch (Site A), the UT to Camp Branch (Site A), and Dula Thoroughfare (Site B), permanent cross-sections have been established to monitor stream restoration and level 1 enhancement reaches. Longitudinal profiles have been established along the entire restored Camp Branch and UT to Camp Branch reaches. Success criteria for stream restoration will include 1) successful classification of enhanced reaches as functioning systems (Rosgen 1996), and 2) channel stability indicative of a stable stream system. In addition, stream crest gauges have been installed to verify the required occurrence of at least two bankfull events over the course of the five year monitoring period in these locations. Permanent

channel cross-sections and photo points have been established along the UT to Dula Thoroughfare to monitor channel stability within Level 1 stream enhancement reaches.

Site groundwater hydrology within wetland restoration areas adjacent to Dula Thoroughfare (Site B) will be monitored by three (3) auto-logging monitoring gauges. Gauges will be downloaded monthly throughout the growing season. Hydrologic success criteria will be achieved by gauges registering groundwater levels within the upper 12 inches of the soil surface for a minimum number of consecutive days corresponding to at least 12.5 percent of the growing season in Anson County under normal annual precipitation. Exceptions will be made if monitoring gauges do not achieve success criteria during documented Site drought conditions.

In order to monitor planted vegetation (i.e., bare root seedlings), $10 \times 10 \text{m}^2$ vegetation monitoring plots have been established within planted portions of Site restoration and enhancement areas. Site vegetation will be monitored in accordance with the guidelines and procedures developed by the Carolina Vegetation Survey (CVS) (CVS-EEP Protocol for Recording Vegetation, Level 1-2 Plot Sampling Only, Version 4.0, 2006). Stem counts of planted and volunteer species as well as an assessment of planted stem survivability will be performed annually. Vegetative monitoring success criteria will be achieved by plot data indicating an average number of planted stems per acre exceeding 320 stems/acre after the third year of monitoring and 260 stems/acre after the fifth and final year of project monitoring.

If vegetative success criteria are not achieved, supplemental plantings will be performed with native species approved by the appropriate regulatory agencies. Supplemental plantings will be performed as needed until success criteria are achieved.

Table 1: Project Mitigation Structure and Objectives

			Restored		
Project Segment	Mitigation		Linear Footage (LF)		
or Reach ID	Type	Approach	or Acreage (AC)	Stationing	Comment
Reach 1 (Camp Branch)	R	P2	1,767 LF	0+00 – 17+94	Total includes 27 LF gap in easement at channel ford
Reach 2 (Camp Branch)	E2	NA	945 LF	NA	Enhancement reaches not stationed
Reach 3 (UT to Camp Branch)	R	P1	403 LF	0+00 - 4+33	Total includes 30 LF gap in easement at channel ford
Reach 4 (UT to Camp Branch)	R	P2	143 LF	4+33 5+76	
Reach 5 (Dula Thoroughfare -T- Channel)	R	P2	2,025 LF	0+00 - 20+25	
Reach 6 (Dula Thoroughfare-D- Channel)	R	P2	705 LF	0+00 7+05	
Reach 7 (UT to Dula Thoroughfare)	E1	NA	1,871 LF	NA	Enhancement reaches not stationed
Reach 8 (UT to Dula Thoroughfare)	E2	NA	480 LF	NA	Enhancement reaches not stationed
Stream Preservation	P	NA	12,918 LF	NA	
Riverine Wetland Restoration	R	NA	3.1 AC	NA	
Riverine Wetland Enhancement	WE	NA	1.0 AC	NA	
Riverine Wetland Preservation	P	NA	7.5 AC	NA	
R = Restoration			P1 = Priority 1	4.3	

E1 = Level 1 Stream Enhancement

E2 = Level 2 Stream Enhancement

WE = Wetland Enhancement

P = Preservation

P2 = Priority 2

NA = Not applicable

Table 2. Project Mitigation Totals by USGS 8-Digit Cataloguing Unit

	USGS Cata	loguing Unit
Mitigation Type	03040104	03040105
Priority 1 Stream Restoration		403 LF
Priority 2 Stream Restoration	2,730 LF	1,910 LF
Level 1 Stream Enhancement	1,871 LF	
Level 2 Stream Enhancement	480 LF	945 LF
Stream Preservation	6,355 LF	6,563 LF
Wetland Restoration	3.1 AC	
Wetland Enhancement	1.0 AC	
Wetland Preservation	2.3 AC	5.2 AC

TABLE OF CONTENTS

EXECU	TIVE S	SUMMA	ARY	ii	
LILLO		0 1 1 1 1 1 1 1			
1.0	INTRO	DUCTI	ON	1	
1.0	INTIC	DOCII	011		
2.0	RESTORATION SUMMARY				
	2.1	Project	Mitigation Goals	2	
	2.1	Site Re	estoration Approaches	4	
		2.1.1	Stream Channel Restoration	4	
		2.1.2	Stream Channel Enhancement		
		2.1.3	Riverine Wetland Restoration		
		2.1.4	Riverine Wetland Enhancement		
		2.1.1			
3.0	MONI	TORING	G PLAN	5	
	3.1			5	
	3.2	Ground	dwater Hydrology	6	
	3.3	Vegeta	ation	6	
		Ü			
4.0	MAIN	TENNA	NCE AND CONTINGENCY PLANS	<i>6</i>	
	2122 222 1				
5.0	REFEI	RENCES	S		
2.0	TCLT 200				
APPE	NDICES			8	
7 11 1 12			: Figures		
			: Record Drawings		
		WIND D	. Record Diamings		

LIST OF FIGURES

- Figure 1: Site Location
- Figure 2: Stream and Wetland Mitigation Units
- Figure 2A: Camp Branch (Site A) Stream and Wetland Mitigation Units
- Figure 2B: Dula Thoroughfare (Site B) Stream and Wetland Mitigation Units
- Figure 2C: UT to Dula Thoroughfare (Site C) Stream and Wetland Mitigation Units
- Figure 3A: Camp Branch (Site A) Monitoring Plan
- Figure 3B: Dula Thoroughfare (Site B) Monitoring Plan
- Figure 3C: UT to Dula Thoroughfare (Site C) Monitoring Plan

MITIGATION REPORT

BISHOP SITE STREAM AND WETLAND RESTORATION ANSON COUNTY, NORTH CAROLINA YADKIN RIVER BASIN CATALOGING UNITS 03040104 AND 03040105

SCO ID# 040611701A

1.0 INTRODUCTION

EcoScience Corporation (ESC) was retained by the North Carolina Ecosystem Enhancement Program (EEP) to provide stream and wetland restoration/enhancement design services for the Bishop Site Stream and Wetland Restoration (hereafter referred to as the Site). The Site, which is in the Yadkin River Basin (Cataloguing Units 03040104 and 03040105), is located north of Wadesboro in Anson County, North Carolina (Figure 1, Appendix A). It is just northwest (upstream) of the Rocky River's confluence with the Pee Dee River. Three separate construction areas, each confined within an EEP-owned conservation easement, comprise the approximate 200-acre Site: Camp Branch (Site A, 94.9 acres), Dula Thoroughfare (Site B, 70.8 acres), and the Unnamed Tributary (UT) to Dula Thoroughfare (Site C, 33.7 acres).

The table below provides summary information of the three major drainage features present within the Site prior to restoration activities. Camp Branch is a second-order stream (per United States Geological Survey [USGS] mapping) that flows approximately 5,078 linear feet through the Site before its confluence with the Rocky River. Dula Thoroughfare is a first-order stream that flows approximately 5,230 linear feet through the Site before its eventual confluence with the Pee Dee River. Its setting at the western edge of the Rocky River floodplain it was previously part of a backwater slough wetland/stream system. The Unnamed Tributary (UT) to Dula Thoroughfare is also a first-order stream that flows approximately 4,880 linear feet within the Site before its confluence with Dula Thoroughfare.

Pre-Construction Site Stream Channel Conditions				
Stream	Stream Type (Rosgen 1996)	Drainage Area at Site (mi²)	Stream Order (per USGS)	Extent within Site (linear feet)
Camp Branch	F4/5	2.9	2 nd	5,078
Dula Thoroughfare	G5	0.4	1 st	5,230
UT to Dula Thoroughfare	G4/5	0.2	1 st	4,880

The goals of the Site restoration effort included stream channel restoration, enhancement, and preservation, and riverine wetland restoration, enhancement, and preservation. Priority 1 and Priority 2 stream restoration were achieved by excavating an appropriately sized (using reference reach data as guidance) bankfull channel on new location. In the Priority 1 stream restoration approach (performed along the UT to Camp Branch), a bankfull channel was excavated along the existing floodplain such that the stream's bankfull elevation corresponded to the existing floodplain grade. A bankfull channel was constructed within a new floodplain excavated at an elevation lower than the existing floodplain grade using the Priority 2 stream restoration approach (Camp Branch and Dula Thoroughfare). Level 1 stream

enhancement was performed along the UT to Dula Thoroughfare by backfilling previously ditched and dredged portions of the channel, thereby reintroducing flow into the appropriately sized adjacent relic streambed. Level 2 stream enhancement was achieved by performing supplemental riparian plantings along Camp Branch (upstream of the Priority 2 restoration reach) and UT to Dula Thoroughfare (upstream of the Level 1 enhancement reach). Stream preservation will be applied to all stream reaches within the Site where no restoration or enhancement activities occurred.

On-Site wetland restoration was achieved by excavating a floodplain adjacent to Dula Thoroughfare, thereby intercepting the local water table to saturate floodplain soils for sufficient periods of time to achieved jurisdictional wetland hydrology. Restored wetland areas were also planted with the appropriate suite of native hardwood species to emulate the Piedmont Bottomland Forest community described by Schafale and Weakley (1990). Wetland enhancement was achieved by performing plantings within deforested (or sparsely forested) jurisdictional wetland areas. Wetland preservation will be applied to all wetland areas within the Site identified during the project's jurisdictional delineation where no restoration or enhancement activities occurred.

On-Site restoration activities provided the following project totals (see Tables 1 and 2 and Figures 2 and 2A-C [Appendix A] for additional details):

- Priority 1 Stream Restoration: 403 linear feet
- Priority 2 Stream Restoration: 4,640 linear feet
- Level 1 Stream Enhancement: 1,871 linear feet
- Level 2 Stream Enhancement: 1,425 linear feet
- Stream Preservation: 12,918 linear feet
- Riverine Wetland Restoration: 3.1 acres
- Riverine Wetland Enhancement: 1.0 acres
- Riverine Wetland Preservation: 7.5 acres

2.0 RESTORATION SUMMARY

2.1 Project Mitigation Goals

The primary Site restoration goals included the restoration of stable dimension, pattern, and profile for impacted on-Site stream reaches including Camp Branch, the UT to Camp Branch, Dula Thoroughfare, and the UT to Dula Thoroughfare. A second primary project goal was the restoration of riverine wetlands adjacent to Dula Thoroughfare.

Secondary Site restoration goals included stream channel enhancement and preservation as well as wetland enhancement and preservation. These goals were achieved via site planting with bare root seedlings to recreate pre-disturbance vegetative communities within their appropriate landscape contexts. See Section 2.1 (Site Restoration Approaches) for details.

At Camp Branch (Site A), specific Site restoration goals included:

- Priority II stream restoration (including all attendant benefits outlined in Rosgen 1996) via excavation of approximately 1,767 linear feet of a designed E/C-type stream of the main Camp Branch channel on new location, including adjacent floodplain excavation to achieve an entrenchment ratio characteristic of E/C-type streams;
- Priority I stream restoration (including all attendant benefits outlined in Rosgen 1996) of approximately 403 linear feet and Priority II restoration of approximately 143 linear feet of a designed E/C-type stream of a UT to Camp Branch, including floodplain excavation along the UT upstream of Camp Branch to achieve a stable confluence;
- Level II stream enhancement of approximately 945 linear feet of Camp Branch upstream of its confluence with the UT via riparian plantings adjacent to the Camp Branch stream banks; and
- Re-establishment of the characteristic, pre-disturbance Piedmont Bottomland Forest (Schafale and Weakley 1990) community adjacent to restoration reaches using bare root seedling plantings.

At Dula Thoroughfare (Site B), specific Site restoration goals included:

- Priority II stream restoration via excavation of approximately 2,730 linear feet of a designed E-type stream of Dula Thoroughfare (including an associated tributary), including adjacent floodplain excavation to achieve and entrenchment ratio characteristic of E-type streams;
- Restoration of approximately 3.1 acres of riverine wetlands adjacent to Dula Thoroughfare via floodplain excavation in previously identified hydric soil areas, thereby re-establishing jurisdictional wetland hydrology;
- Aquatic habitat creation via excavation of vernal pools within floodplain cut areas; and
- Re-establishment of the characteristic, pre-disturbance Piedmont Bottomland Forest (Schafale and Weakley 1990) community adjacent to restoration reaches using bare root seedling plantings.

At UT to Dula Thoroughare (Site C), specific Site restoration goals included:

- Level I enhancement of approximately 1,871 linear feet of stream via backfill of straightened and ditched portions of the existing watercourse, thereby re-establishing characteristic stream dimension and pattern by reintroducing flow into adjacent relic channel areas;
- Level II enhancement of approximately 480 linear feet of stream via riparian plantings adjacent to the UT to Dula Thoroughfare stream banks; and
- Re-vegetation of open areas adjacent to the UT to Dula Thoroughfare via plantings of characteristic, pre-disturbance community types described by Schafale and Weakley (1990) using bare root seedling plantings.

Prior to restoration activities, each of the on-Site drainage features listed above had been impacted to accommodate agricultural land usage (primarily row crop cultivation). In the classic scenario, stream channels are traditionally relocated to the toe of the adjacent valley slope, straightened, and dredged in an attempt to decrease flooding and increase the size of the cultivatable areas within the floodplain. Field evidence suggests this was the case with Camp Branch, while Dula Thoroughfare and the UT to Dula Thoroughfare were straightened and ditched along their existing locations. The straightening and ditching of Dula Thoroughfare likely drained adjacent riverine wetlands with the exception of those along the fringe of the channel.

2.1 Site Restoration Approaches

Site restoration approaches are discussed below. Site restoration activities consisted of stream restoration, enhancement, and preservation, and wetland restoration, enhancement, and preservation. Stream and wetland preservation do not involve active restoration activities and thus are not detailed below; however, Site preservation totals are summarized in Tables 1 and 2 and depicted on Figures 2 and 2A-C (Appendix A).

2.1.1 Stream Channel Restoration

Priority 2 stream restoration (Reaches 1, 4, 5, and 6, Table 1) was achieved by restoring Camp Branch, UT to Camp Branch, and Dula Thoroughfare's bankfull dimensions to reflect those exhibited by reference streams in similar geographic contexts within the Piedmont physiographic province. This was accomplished by the construction of a new bankfull channel within an excavated floodplain, thereby reestablishing the stream's appropriate bankfull dimensions and geometry to enable bankfull and higher-volume flows to exit the channel. Although riffle and pool depths were specified along Camp Branch and the UT to Camp Branch, they were not along Dula Thoroughfare because the intent of restoration efforts was to recreate a low-gradient backwater slough system. Priority 2 stream restoration reaches are displayed on Figures 2 and 2A-B (Appendix A). The total stream channel length improved by Priority 2 restoration is 4,640 linear feet.

Priority 1 stream restoration (Reach 3, Table 1) was achieved by excavating a new bankfull channel within the existing UT to Camp Branch floodplain such that the channel bankfull elevation corresponded with the existing floodplain grade. Priority 1 stream restoration provides the same fluvial hydrologic benefits as those offered by Priority 2 restoration (discussed above), but is preferable since less land disturbance is required. Also, the natural soil profile is preserved using this approach. The Site's Priority 1 stream restoration reach is displayed on Figure 2A (Appendix A). The total stream channel length improved by Priority 1 restoration is 403 linear feet.

2.1.2 Stream Channel Enhancement

Level 1 stream channel enhancement was undertaken along the UT to Dula Thoroughfare (Reach 7, Table 1). Prior to restoration activities, the stream had been diverted into an adjacent ditched and straightened channel, while soil material leftover from the excavation was left adjacent to the relic stream. In order to provide Level 1 stream enhancement along this reach, the previously ditched and straightened portions of the channel were backfilled with the leftover excavated material and flow was reintroduced into the adjacent relic channel. The Site's Level 1 stream enhancement reach is displayed on Figure 2C (Appendix A). The total stream channel length improved by Level 1 stream enhancement is 1,871 linear feet.

Level 2 stream channel enhancement was performed along reaches of Camp Branch and the UT to Dula Thoroughfare upstream of restoration and Level 1 enhancement reaches. (Reaches 2 and 8, Table 1). Riparian bare root seedling plantings were performed adjacent to the stream banks in these areas, thereby increasing canopy shading, floral diversity, and contributing to floodplain roughness to dissipate higher-energy flood flows upon tree maturity. The suite of species used to plant riparian areas mimicked the Piedmont Bottomland Forest described by Schafale and Weakley (1990). Level 2 stream enhancement

reaches are displayed on Figures 2A and 2C (Appendix A). The total stream channel length improved by Level 2 stream enhancement is 1,425 linear feet.

2.1.3 Riverine Wetland Restoration

Riverine wetland restoration was performed by excavating downstream floodplain areas adjacent to Dula Thoroughfare that contained hydric soil inclusions. Floodplain excavation effectively lowered the ground surface elevation in excavated areas closer to the seasonal high water table. In addition, floodplain excavation restored Dula Thoroughfare's natural flood regime, enabling bankfull and higher flows to spread out over the floodplain, providing an additional hydrologic input. In order to diversify floodplain habitat and increase local microtopographical complexity, floodplain pools were constructed within the excavated floodplain. In essence, grading activities along Dula Thoroughfare resulted in the restoration of a backwater slough ESC believes the watercourse mimicked in its pre-disturbance condition. Riverine wetland restoration areas are displayed on Figure 2B (Appendix A). The total area of riverine wetland restoration is 3.1 acres (Table 1).

2.1.4 Riverine Wetland Enhancement

Riverine wetland enhancement was accomplished by restoring the characteristic, native plant communities within deforested (or sparsely forested) jurisdictional wetland areas. Aside from incidental grading within a small seep wetland adjacent to the UT to Dula Thoroughfare (Figure 2C, Appendix A), grading activities were not performed in wetland enhancement areas. The total area of riverine wetland enhancement is 1.0 acre (Table 1).

3.0 MONITORING PLAN

In order to ensure the Site meets regulatory stream and wetland restoration monitoring criteria, each parameter on-Site will be monitored annually for five (5) years or until success criteria has been achieved. Refer to Figures 3A-C (Appendix A) for monitoring plan details.

3.1 Stream Channel

In order to ensure stable channel bankfull dimension, pattern, and profile along stream restoration reaches, stream channel assessment surveys will be undertaken. Longitudinal profiles along the entirety of the Camp Branch and UT to Camp Branch restoration reaches (Reaches 1, 3, and 4) are proposed to verify stream profile stability (see Figures 3A-B [Appendix A] for longitudinal profile locations). Longitudinal profiles are not proposed along Dula Thoroughfare because riffles and pool depths (i.e., variations in bedform) were not specified (see Section 2.1.1). Within each longitudinal profile monitoring reach and along Dula Thoroughfare (Reaches 5 and 6) and the UT to Dula Thoroughfare (Reach 7), stream channel cross-sections are proposed (approximately one cross-section for every 500 linear feet of stream) to monitor any potential instability and adverse changes in channel geometry (see Figures 3A-B [Appendix A] for cross-section locations). Measured parameters will include cross-sectional area, bankfull width, average and maximum bankfull depth, width-to-depth ratio, and substrate size class distribution. Stream channel photographs will also be taken at each cross-section location looking upstream and downstream at the channel at the cross-section midpoint. Longitudinal profiles and cross-sections will be surveyed annually throughout the 5-year project monitoring period. Channel geomorphic data will be analyzed and presented in the Site's Annual Monitoring Reports. Success criteria for stream

restoration and Level 1 enhancement will include 1) successful classification of the reach as a functioning system (Rosgen 1996), and 2) channel stability indicative of a stable stream system.

Photo points are proposed along the UT to Dula Thoroughfare (Reach 7) in conjunction with channel cross-sections to monitor Level 1 stream enhancement activities. Photo points are proposed at strategic locations within the reach so that any potential areas of instability will be documented and addressed with remedial maintenance measures.

Stream crest gauges have been installed adjacent to stream restoration reaches at Camp Branch, the UT to Camp Branch, and Dula Thoroughfare to monitor for the occurrence of bankfull events (see Figures 3A-B [Appendix A] for crest gauge locations). In order to achieve success criteria, at least two bankfull events must occur over the course of the five year monitoring period. It should be noted that at least two bankfull events were observed on Camp Branch, the UT to Camp Branch, and Dula Thoroughfare following the completion of Site grading activities before the project's final walkthrough.

3.2 Groundwater Hydrology

Three (3) auto-logging groundwater monitoring gauges have been installed in wetland restoration areas adjacent to Dula Thoroughfare (see Figure 3B [Appendix A] for monitoring gauge locations). Gauges will be downloaded monthly throughout the growing season. Hydrologic success criteria will be achieved by registering groundwater levels within the upper 12 inches of the soil surface for a minimum number of consecutive days corresponding to at least 12.5 percent of the growing season in Anson County under normal annual precipitation. Exceptions will be made if monitoring gauges do not achieve success criteria during documented Site drought conditions.

3.3 Vegetation

Vegetation monitoring (10 X 10m²) plots will be installed to monitor planted vegetation within Site restoration and enhancement areas. Site vegetation will be monitored in accordance with the guidelines and procedures developed by the Carolina Vegetation Survey (CVS) (CVS-EEP Protocol for Recording Vegetation, Level 1-2 Plot Sampling Only, Version 4.0, 2006). Proposed vegetation monitoring plot locations are displayed on Figures 3A-C (Appendix A). Plots will be monitored annually, and a stem count of planted and volunteer species as well as an assessment of survivability of planted stems will be performed. Vegetative monitoring success will be achieved by plot data indicating an average number of planted stems per acre exceeding 320 stems/acre after the third year of monitoring and 260 stems/acre after the fifth and final year of project monitoring.

4.0 MAINTENNANCE AND CONTINGENCY PLANS

Graded areas within the Site will be inspected throughout the five year monitoring period. Areas of erosion will be noted, photographed, and discussed with EEP staff to determine if remedial maintenance measures should be undertaken.

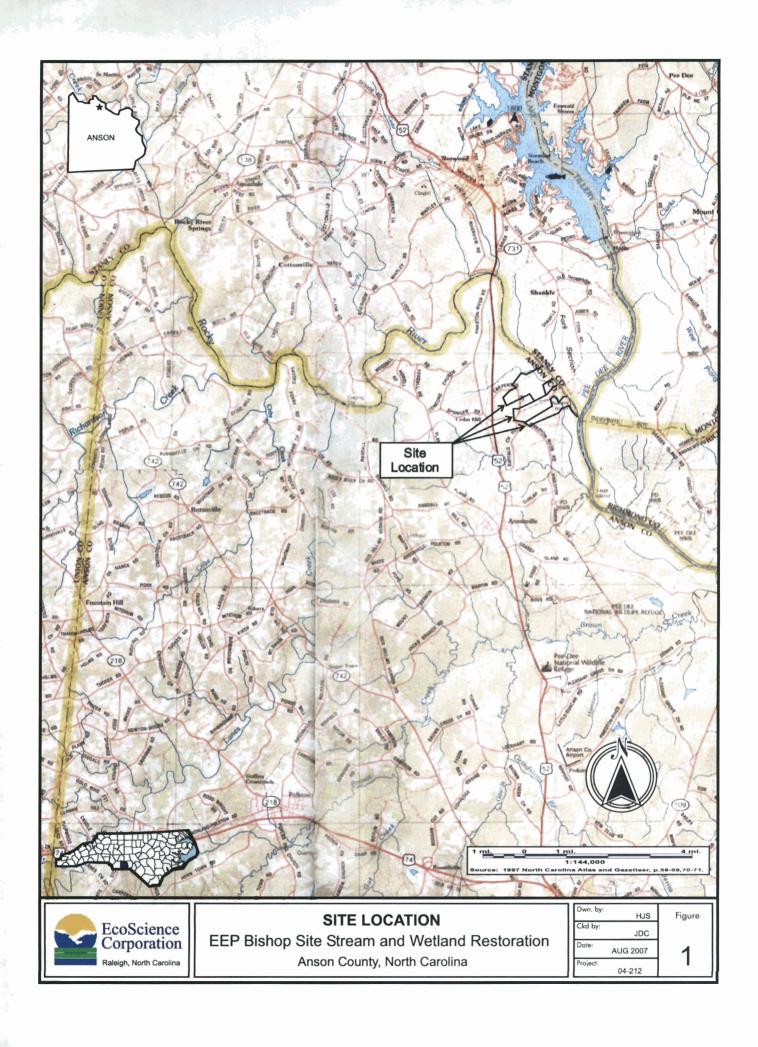
If vegetation success criteria are not achieved by on average planted stem/acre density calculations from combined sample plot data, supplemental plantings will be performed with native tree species approved by the appropriate regulatory agencies (i.e., the EEP, USACE, and DWQ). Supplemental plantings will be performed as needed until vegetative success criteria are achieved.

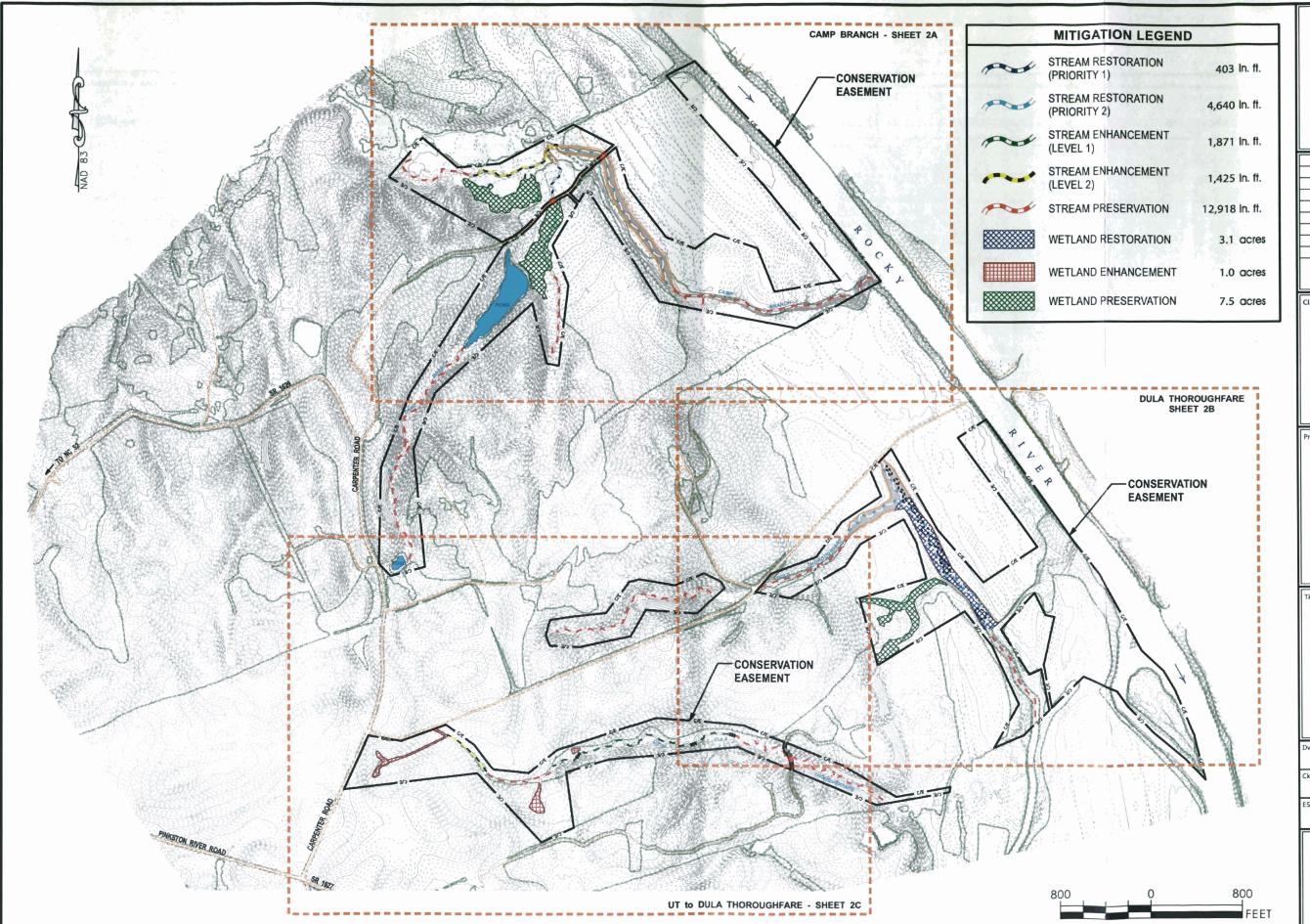
Beaver activity has been observed within the UT to Camp Branch (Site A) just upstream of the access road ford. Throughout the five-year monitoring period, the Site will be periodically monitored for beaver activity encroachment into the conservation easement. If beaver activity is observed on-Site, EEP will be notified to pursue remedial measures.

5.0 REFERENCES

Rosgen, D. 1996. Applied River Morphology. Wildland Hydrology. Pagosa Springs, Colorado

Schafale, M. P. and A. S. Weakley. 1990. Classification of the Natural Communities of North Carolina: Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, N.C. Department of Environment, Health, and Natural Resources. Raleigh, North Carolina.


APPENDICES


APPENDIX A: FIGURES

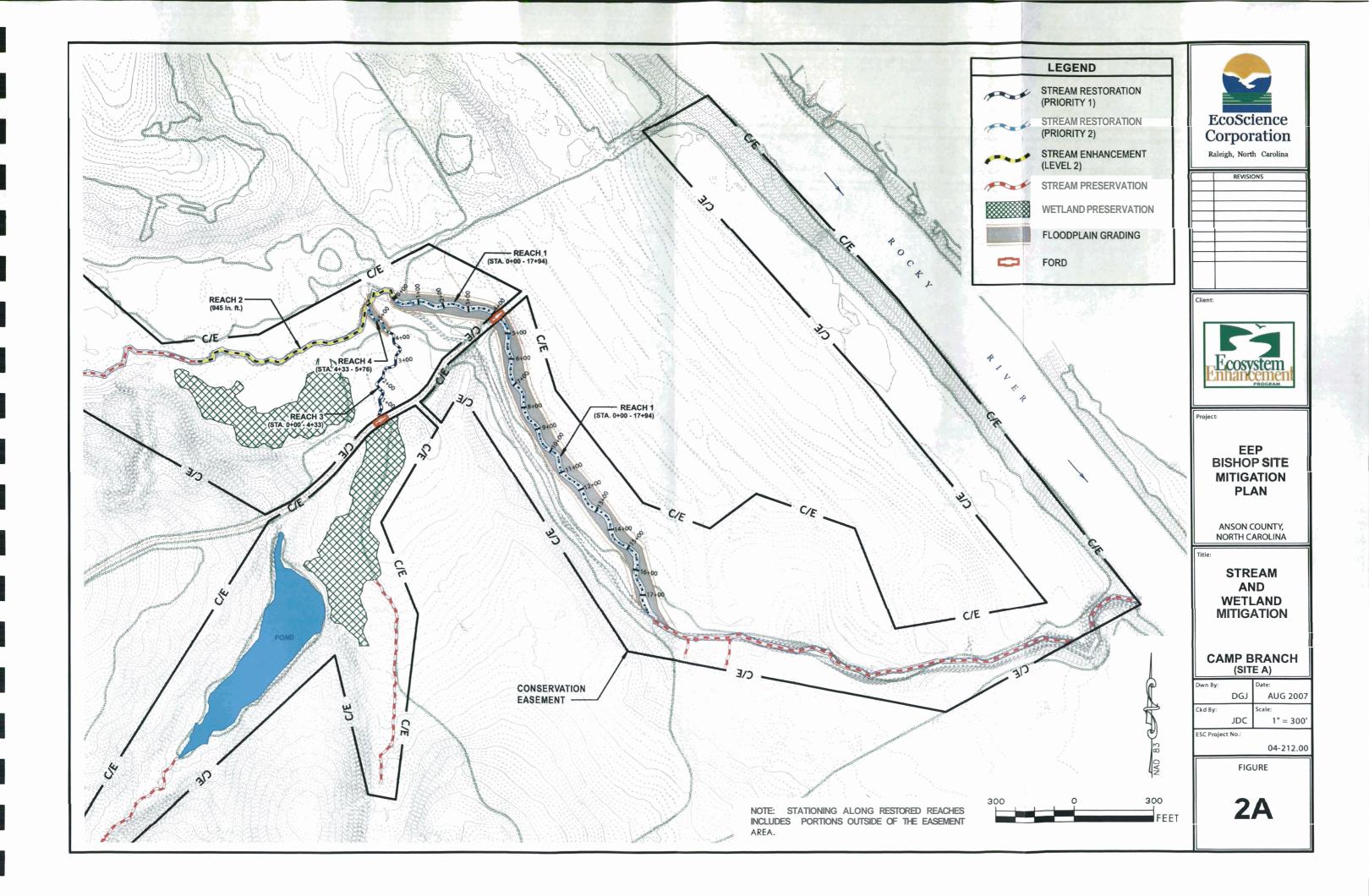
Appendix A

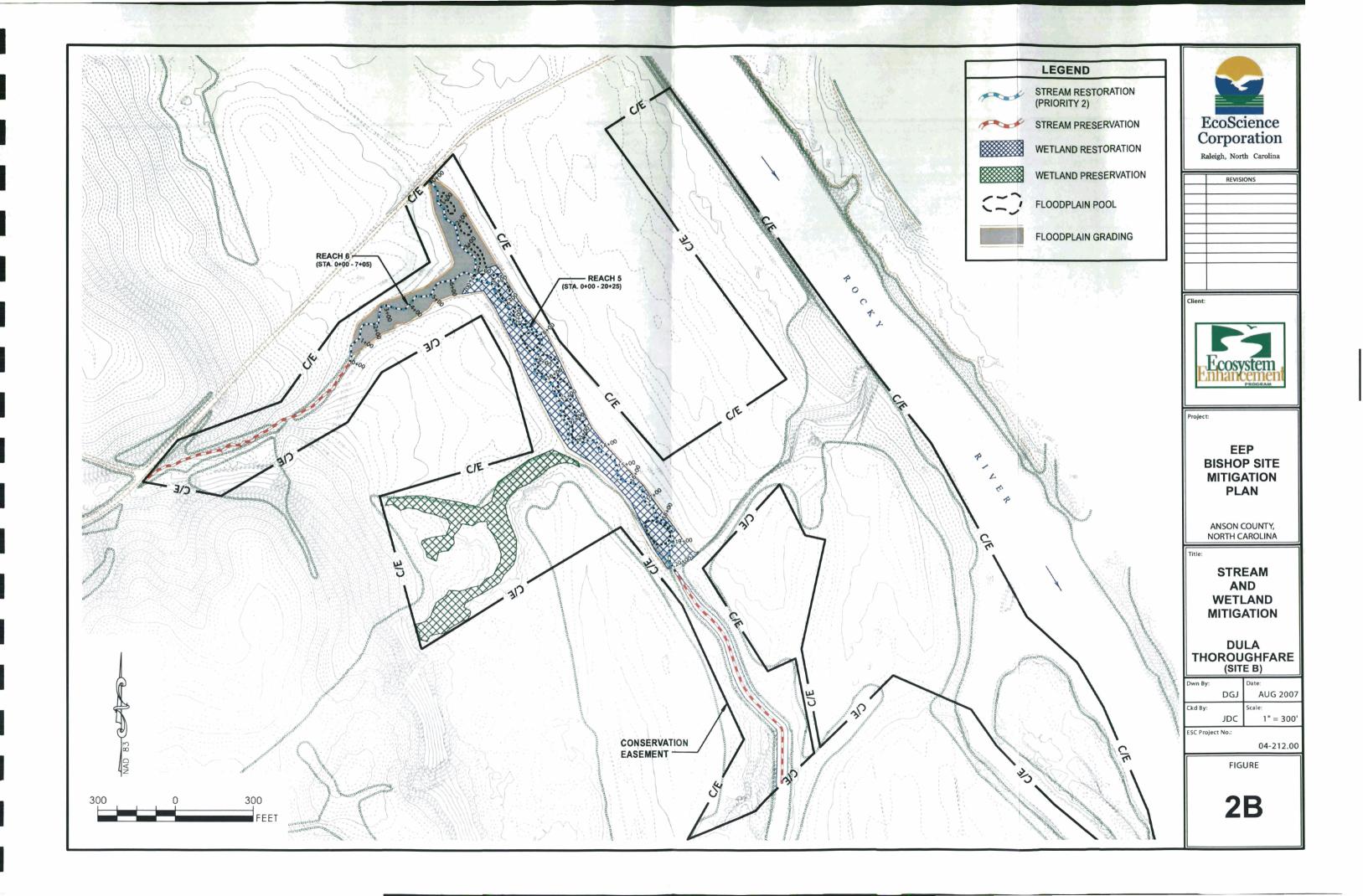
Bishop Site Stream and Wetland Restoration

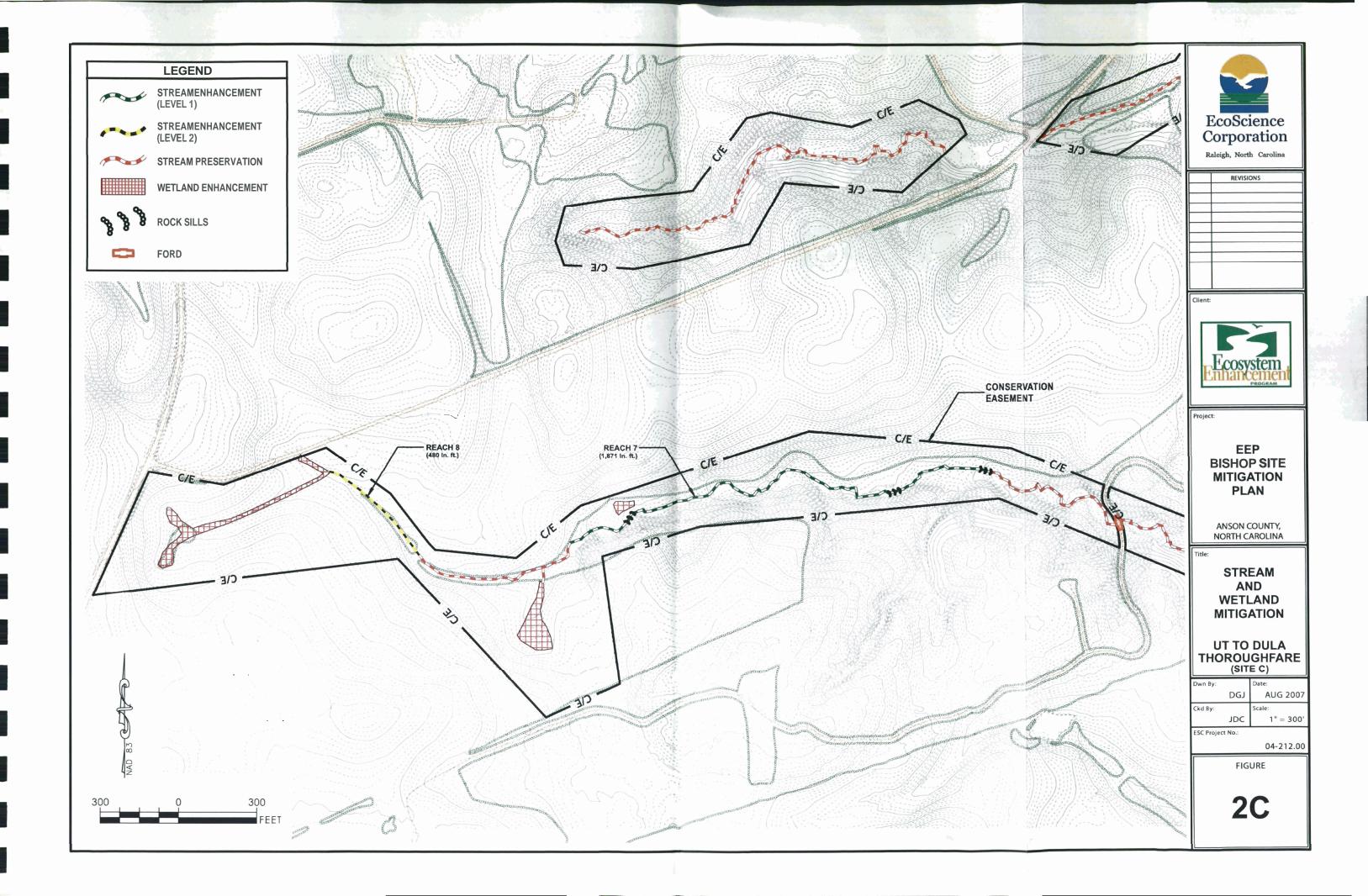
EEP Project No. D05010S

 REVISIONS	
 V.	_
 -	
)	_

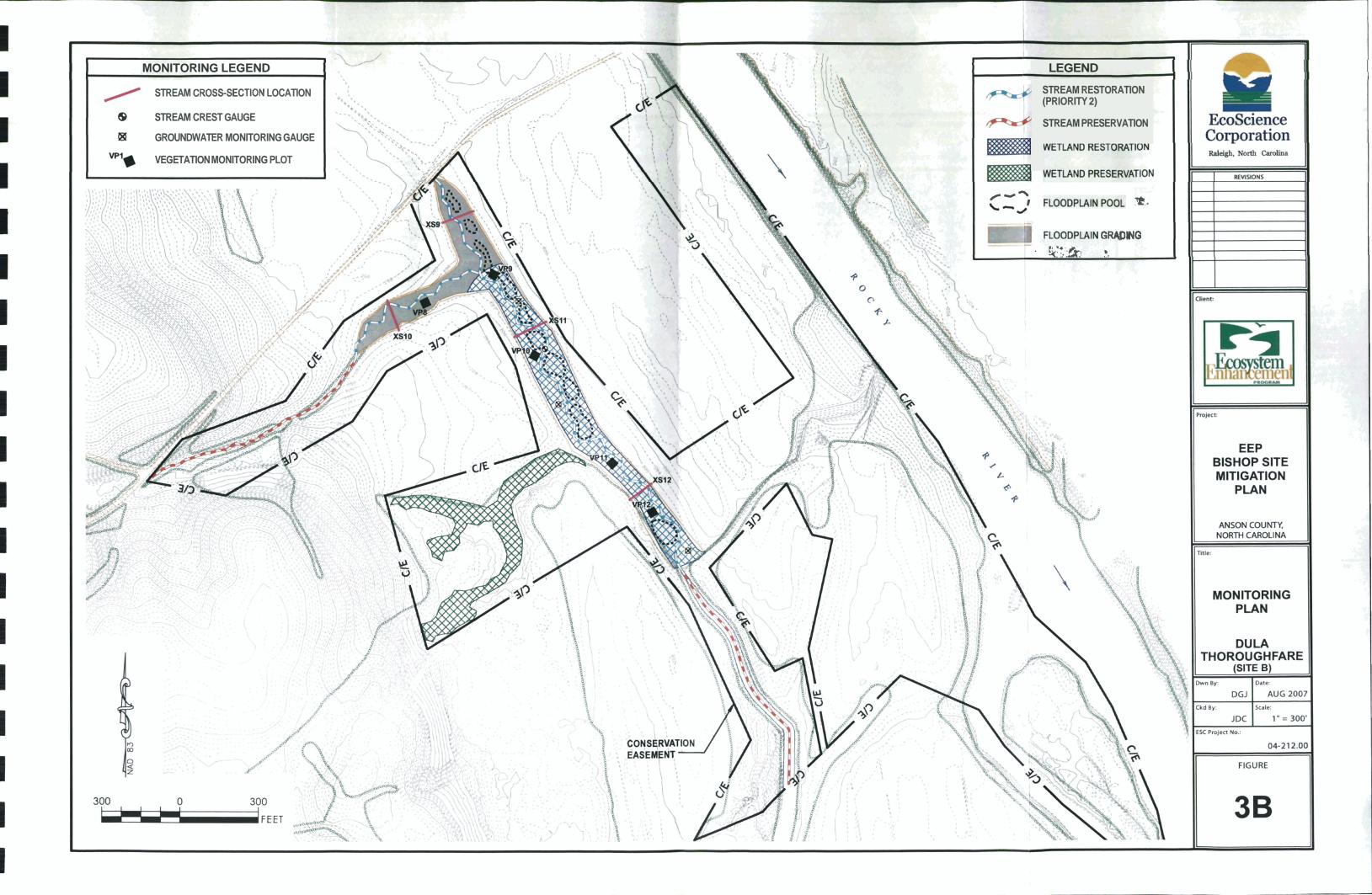
EEP BISHOP SITE MITIGATION PLAN

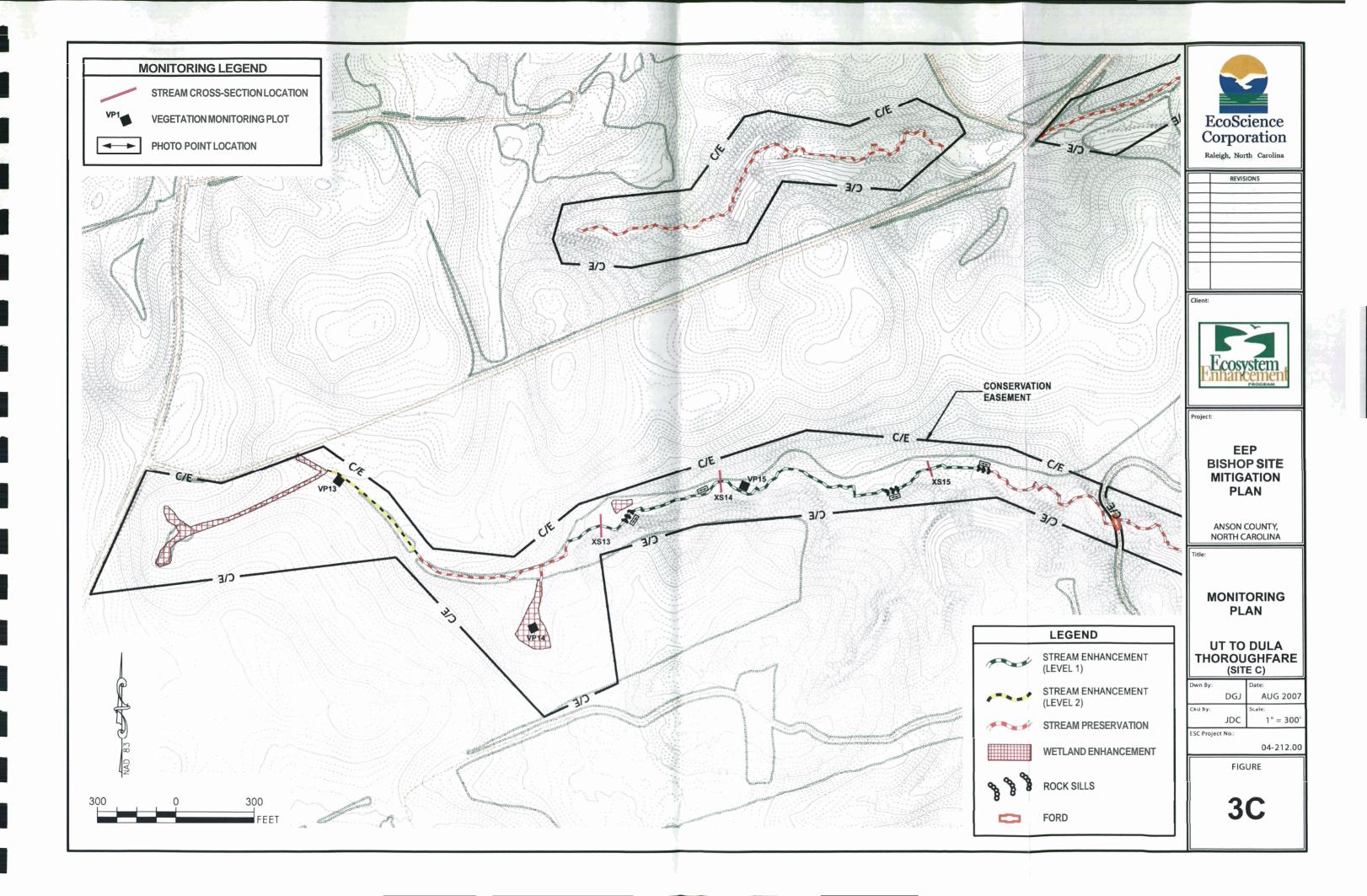

ANSON COUNTY, NORTH CAROLINA

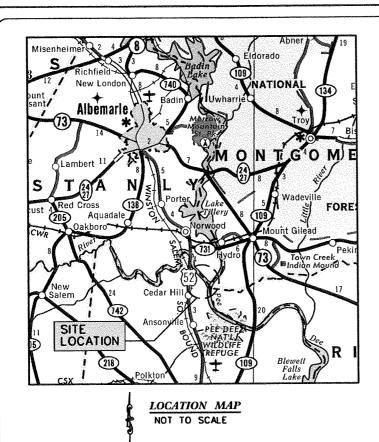

STREAM AND **WETLAND MITIGATION UNITS**


Dwn By:		Date:
	DGJ	AUG 2007
Ckd By:		Scale:
	JDC	1" = 800'

04-212.00

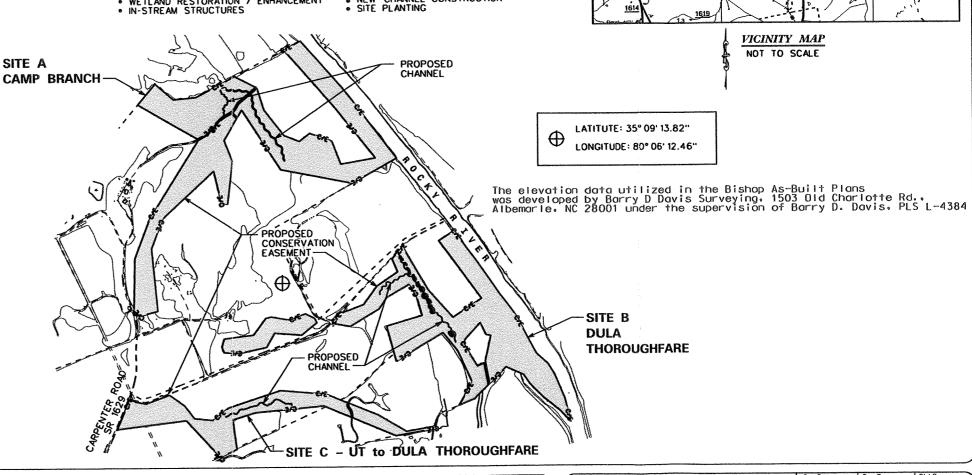

FIGURE





STORATION RE TREAM **BISHOP** C OJE

BISHOP SITE STREAM AND WETLAND RESTORATION


ANSON COUNTY, NORTH CAROLINA

LOCATION:

SITE IS LOCATED IN NORTHERN ANSON COUNTY, APPROXIMATELY 3 MILES NORTH OF THE TOWN OF ANSONVILLE AND APPROXIMATELY 1.5 MILES EAST OF THE TOWN OF CEDAR HILL NEAR THE CONFLUENCE OF THE ROCKY RIVER AND THE PEE DEE RIVER.

STREAM AND WETLAND RESTORATION / ENHANCEMENT TYPE OF WORK:

- STREAM RESTORATION / ENHANCEMENT
 WETLAND RESTORATION / ENHANCEMENT
 IN-STREAM STRUCTURES
- FLOODPLAIN GRADING
 NEW CHANNEL CONSTRUCTION
 SITE PLANTING

CAMP BRANCH:

CONSERVATION EASEMENT AREA: 94.9± ACRES AREA OF DISTURBANCE: 22.4± ACRES

DULA THOROUGHFARE:

CONSERVATION EASEMENT AREA: 70.8± ACRES AREA OF DISTURBANCE: 24.6± ACRES

UT to DULA THOROUGHFARE:

CONSERVATION EASEMENT AREA: 33.7± ACRES AREA OF DISTURBANCE: 11.3± ACRES

EcoScience Corporation

ENGINEER: DAVID G. MODLIN

PROJECT MANAGER: JAMES D. COOPER

ECOSYSTEM ENHANCEMENT PROGRAM

Prepared for:

LOCATION

Raleigh, North Carolina Revisions Date REV'D SHEETS A-2B, A-3, 09/29/05 B-28, B-3, C-28, C-3 JDG AS-BUILT

Dsn.By:		Dwn.By:	Ckd.By:	
JD	С	MAF		EBB
Date:			<u> </u>	
		JUL 2007		
ESC Project I	Vo:			
		04-212		
		CUEET		
		SHEET		ĺ
		and the second		1
		8 3		

INDEX OF SHEETS

- 1: TITLE SHEET
- 1A: INDEX OF SHEETS / GENERAL NOTES
- 1B: ELEMENT SYMBOLOGY
- 2: SITE ACCESS

CAMP BRANCH

- A: CONSTRUCTION SEQUENCE
- A-1: MORPHOLOGICAL TABLE / SHEAR STRESS TABLE
- A-1A: POOL RADIUS TABLE / RIFFLE TABLE
- A-2: TYPICAL SECTIONS
- A-2A, A-2B: GENERAL DETAILS
 - A-2C: NEW CHANNEL CENTERLINE DATA
 - A-3: SUMMARY OF QUANTITIES / SUMMARY OF EARTHWORK
 - A-4: EXISTING CONDITIONS
 - A-5: NEW CHANNEL LAYOUT
- A-6, A-6A: SITE PLAN
 - A-7: PROFILE CAMP BRANCH -C- CHANNEL
 - A-7A: AS-BUILT PROFILE CAMP BRANCH -C- CHANNEL
 - A-8: PROFILE UT to CAMP BRANCH -A- CHANNEL
 - A-8A: AS-BUILT PROFILE UT to CAMP BRANCH -A- CHANNEL
- A-EC1, A-EC1A: EROSION CONTROL PLAN
 - A-EC2: EROSION CONTROL DETAILS
 - A-L1: PLANTING PLAN
 - X1-X4: CROSS-SECTIONS
 - X1A-X4A: AS-BUILT CROSS-SECTIONS

DULA THOROUGHFARE

- **B: CONSTRUCTION SEQUENCE**
- B-1: RADIUS TABLE / SHEAR STRESS TABLE
- **B-2: TYPICAL SECTIONS / GENERAL DETAILS**
- B-2A, B-2B: GENERAL DETAILS
 - **B-2C: NEW CHANNEL CENTERLINE DATA**
 - B-3: SUMMARY OF QUANTITIES / SUMMARY OF EARTHWORK
 - **B-4: EXISTING CONDITIONS**
 - **B-5: NEW CHANNEL LAYOUT**
 - **B-6: SITE PLAN**
 - B-7: PROFILE DULA THOROUGHFARE -T- CHANNEL
 - B-7A: AS-BUILT PROFILE DULA THOROUGHFARE -T- CHANNEL
 - B-8: PROFILE DULA THOROUGHFARE -D- CHANNEL
 - B-8A: AS-BUILT PROFILE DULA THOROUGHFARE -D- CHANNEL
 - **B-EC1: EROSION CONTROL PLAN**
 - **B-EC2: EROSION CONTROL DETAILS**
 - **B-L1: PLANTING PLAN**
 - X5-X7: CROSS-SECTIONS
- X5A-X7A: AS-BUILT CROSS-SECTIONS

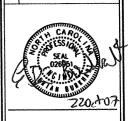
UT TO DULA THOROUGHFARE

- C: CONSTRUCTION SEQUENCE
- C-1: MORPHOLOGICAL TABLE / STRUCTURE TABLE NOT APPLICABLE
- C-2: TYPICAL SECTIONS
- C-2A, C-2B: GENERAL DETAILS
 - C-3: SUMMARY OF QUANTITIES /SUMMARY OF EARTHWORK
 - C-4: EXISTING CONDITIONS
 - C-5: NEW CHANNEL LAYOUT NOT APPLICABLE
 - C-6: SITE PLAN
 - C-7: PROFILE UT TO DULLA THOROUGHFARE NOT APPLICABLE
 - C-EC1: EROSION CONTROL PLAN
 - C-EC2: EROSION CONTROL DETAILS
 - C-L1: PLANTING PLAN
 - X: CROSS-SECTIONS NOT APPLICABLE

GENERAL NOTES

1. ALL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE FOLLOWING STANDARDS

A) NORTH CAROLINA DEPARTMENT OF TRANSPORTATION "STANDARD SPECIFICATIONS FOR ROADS AND STRUCTURES ENGLISH" DATED JANUARY 2002, AND ANY SUPPLEMENTS THERETO ISSUED PRIOR TO THE DATE OF RECEIPT OF BIDS.


B) NORTH CAROLINA DEPARTMENT OF TRANSPORTATION "ROADWAY STANDARD DRAWINGS, ENGLISH" DATED JANUARY 2002 AND ANY SUPPLEMENTS ISSUED THERETO PRIOR TO THE DATE OF RECEIPT OF BIDS.

- C) REQUIREMENTS OF THE DEPARTMENT OF ENVIRONMENT AND NATURAL RESOURCES
- 2. ALL CONSERVATION EASEMENT CORNER MARKERS HAVE BEEN PLACED BY OTHERS. THE CONTRACTOR SHOULD CONFIRM THE CONSERVATION EASEMENT BOUNDARIES BEFORE COMMENCING WORK.
- 3. CONTRACTOR SHALL FIELD VERIFY EXISTING CONDITIONS AND DIMENSIONS WHICH AFFECT NEW WORK PRIOR TO ANY CONSTRUCTION.
- 4. THE CONTRACTOR IS SOLEY RESPONSIBLE FOR ALL SAFETY ACCORDING TO CURRENT OSHA REGULATIONS
- 5. THE CONTRACTOR IS RESPONSIBLE FOR AVOIDING ANY DISTURBANCE OR DAMAGE TO UTILITIES AND SHALL BE RESPONSIBLE FOR IMMEDIATELY REPARING ANY DAMAGES AT A COST INCIDENT TO THIS CONTRACT. CALL BEFORE YOU DIG --- 1-800-632-4949.
- 6. THE EXISTING CHANNELS TO BE FILLED SHALL BE FILLED TO THE MAXIMUM EXTENT FEASIBLE WITH MATERIAL EXCAVATED FROM ON-SITE AND STOCKPILED ADJACENT TO REACHES OF THE OLD CHANNEL DISTURBANCES SHALL BE PROTECTED IN ACCORDANCE WITH THE APPROVED SEDIMENT AND EROSION CONTROL PLAN.
- 7. SILT FENCE SHALL BE PLACED BETWEEN STOCKPILE AREAS AND THE EXISTING CHANNEL AND SHALL BE INSTALLED ACCORDING TO THE APPROVED SEDIMENT AND EROSION CONTROL PLAN.
- 8. THE CONTRACTOR MAY UTILIZE THE DESIGNATED STAGING AREA AND THE AREA INSIDE THE PROPOSED CONSERVATION EASEMENT FOR STAGING AND STOCKPILING EQUIPMENT AND MATERIALS.
- 9. THE COORDINATE SYSTEM IS THE NAD 83 STATE PLANE GRID. THE VERTICAL DATUM IS BASED ON NVD 1929.
- 10. EXISTING GRAVEL ACCESS ROADS WILL BE LEFT IN "AS IS OR BETTER" CONDITION. STONE, CLASS ABC, HAS BEEN ESTIMATED AND INCLUDED IN THE QUANTITY ESTIMATES SHOULD EXISTING GRAVEL ROADS NEED REPAIR AT THE PROJECT CONCLUSION. AN ALLOWANCE OF 3 INCHES OF CLASS ABC STONE AND 16-FOOT WIDTH OF EXISTING ROAD WERE ESTIMATED FOR THE ENTIRE LENGTH OF EXISTING ACCESS ROADS. FINAL PAY QUANTITIES WILL BE ON ACTUAL QUANTITIES USED FOR IMPROVED EXISTING ACCESS ROADS.
- 11. SHOULD ACCESS ROADS AS SHOWN ON THE PLAN SHEETS REQUIRE IMPROVEMENT, CLASS A STONE AND FILTER FABRIC HAVE BEEN ESTIMATED AND INCLUDED IN THE QUANTITY ESTIMATE. AN ALLOWANCE OF 480 TONS OF CLASS A STONE AND 1333 SQUARE YARDS OF FILTER FABRIC WERE ESTIMATED PER 1000 FEET OF 12-FOOT WIDE IMPROVED ACCESS ROAD. QUANTITIES ESTIMATED ALLOW FOR IMPROVING THE ENTIRE LENGTH OF EACH ACCESS ROAD SHOWN ASSUMING WORST CASE WEATHER CONDITIONS. FINAL PAY QUANTITIES WILL BE ON ACTUAL QUANTITIES USED FOR IMPROVED ACCESS ROADS.

 THE PROPOSED ACCESS ROADS WILL BE REMOVED OR REMAIN AS INDICATED ON PLAN SHEET 2.
- 12. THE BISHOP SITE STREAM / WETLAND RESTORATION PROJECT DRAINAGE IS SHOWN ON FIRM MAP NO. 3702840050B. THE PROJECT IS IN FLOOD ZONE A. NO DETAILED FLOOD STUDY HAS BEEN PERFORMED FOR THIS AREA OF ANSON COUNTY.
- 13. ALL ELEVATIONS AND GRADING POINTS WERE DERIVED FROM TOPOGRAPHIC MAPPING PROVIDED TO ECOSCIENCE CORPORATION BY THE OWNER. SUPPLEMENTAL SURVEYING WAS PROVIDED BY K2 DESIGN, GOLDSBORO, NC. THE GRADING PLAN AND SPECIFIED ELEVATIONS, AS SHOWN, ARE RELATIVE TO THIS TOPOGRAPHIC MAPPING. TOPOGRAPHIC DISCREPANCIES IDENTIFIED AS A RESULT OF FIELD SURVEYS DURING CONSTRUCTION MAY BE ADJUSTED AT THE DISCRETION OF THE PROJECT MANAGER. ALSO, EARTHWORK QUANTITY ESTIMATES WERE DERIVED FROM ELEVATION CONTOURS SHOWN ON THESE PLANS.

REVISIONS				
•	AS-BUILT - JU	LY 2007		
				
	 			
	1			

BISHOP SITE STREAM / WETLAND RESTORATION PLAN

> ANSON COUNTY, NORTH CAROLINA

INDEX OF SHEETS / GENERAL NOTES

Dan. By:		Dwn. By:	
	JDC		MAF
Ckd. By:		Dote:	
	EBB	JUL	2007
Scole:			

NO SCALE

04-212

SHEET

ECOSCIENCE CORPORATION ELEMENT SYMBOLOGY

TOPOGRAPHY & HYDROGRAPHY

MAJOR CONTOUR	650
MINOR CONTOUR · · · · · · · · · · · · · · · · · · ·	yes the said and the the title
GRAVEL / DIRT ROAD	=======
PAVED ROAD	
WETLAND / SWAMP ·····	
DIRECTION OF FLOW	>
EXISTING STREAM	
EXISTING WETLAND BOUNDARY	
HIGH QUALITY WETLAND BOUNDARY	HQ WLB
MEDIUM QUALITY WETLAND BOUNDARY	MQ WLB
LOW QUALITY WETLAND BOUNDARY	-LQ WLB-
PROPOSED WETLAND BOUNDARY	WLB
EXISTING SPOT ELEVATION	[‡] 648
PROPOSED SPOT ELEVATION	648

BOUNDARIES, PROPERTIES, AND EASEMENTS

COUNTY LINE
CITY LINE
PROPERTY LINE P
EXISTING IRON PIN 0
RIGHT OF WAY — R/W—
PROPERTY MONUMENT
PARCEL NUMBER 6
ESC BENCHMARK & ESC-BM1
NCDOT MONUMENT © NCDOT-BM5
UTILITY EASEMENT
POWER LINE
EXISTING EASEMENT E
PROPOSED CONSERVATION EASEMENTC/E

BUILDINGS & OTHER STRUCTURES

CILDINGS & CITIER STRUCTURE	ALS.
BUILDINGS	
WELL	Q W
BRIDGE	
BOX CULVERT OR TUNNEL	r======
CULVERT	> · · · · · · · · · · · · · · · · · · ·
BRIDGE WING WALL, HEAD WALL, AND END WALL)conc ww(
HEAD AND END WALL	CONC HW
PIPE CULVERT	=======================================
FOOTBRIDGE	≻ -≺
DRAINAGE BOXES	СВ
EXISTING FENCE	—xxx-
POWER POLE · · · · · · · · · · · · · · · · · · ·	ė
TELEPHONE POLE	-€-
LIGHT POLE ·····	¤
POWER LINE TOWER · · · · · · · · · · · · · · · · · · ·	\boxtimes
SANITARY SEWER MANHOLE	•
STORM SEWER MANHOLE	S
SANITARY SEWER	ssss
STORM SEWER	—s—s—
FOOTBRIDGE	
TRAIL, FOOTPATH	
RAIL ROAD ·····	CSN TRANSPORTATION
VEGETATION	
SINGLE TREE ·····	&
SINGLE SHRUB ·····	·····• 6
EXISTING WOODS LINE	
PROPOSED FEATURES AND STR	RUCTURES
PROPOSED CONSTRUCTION ENTRANCE	

PROPOSED ROCK SILL....

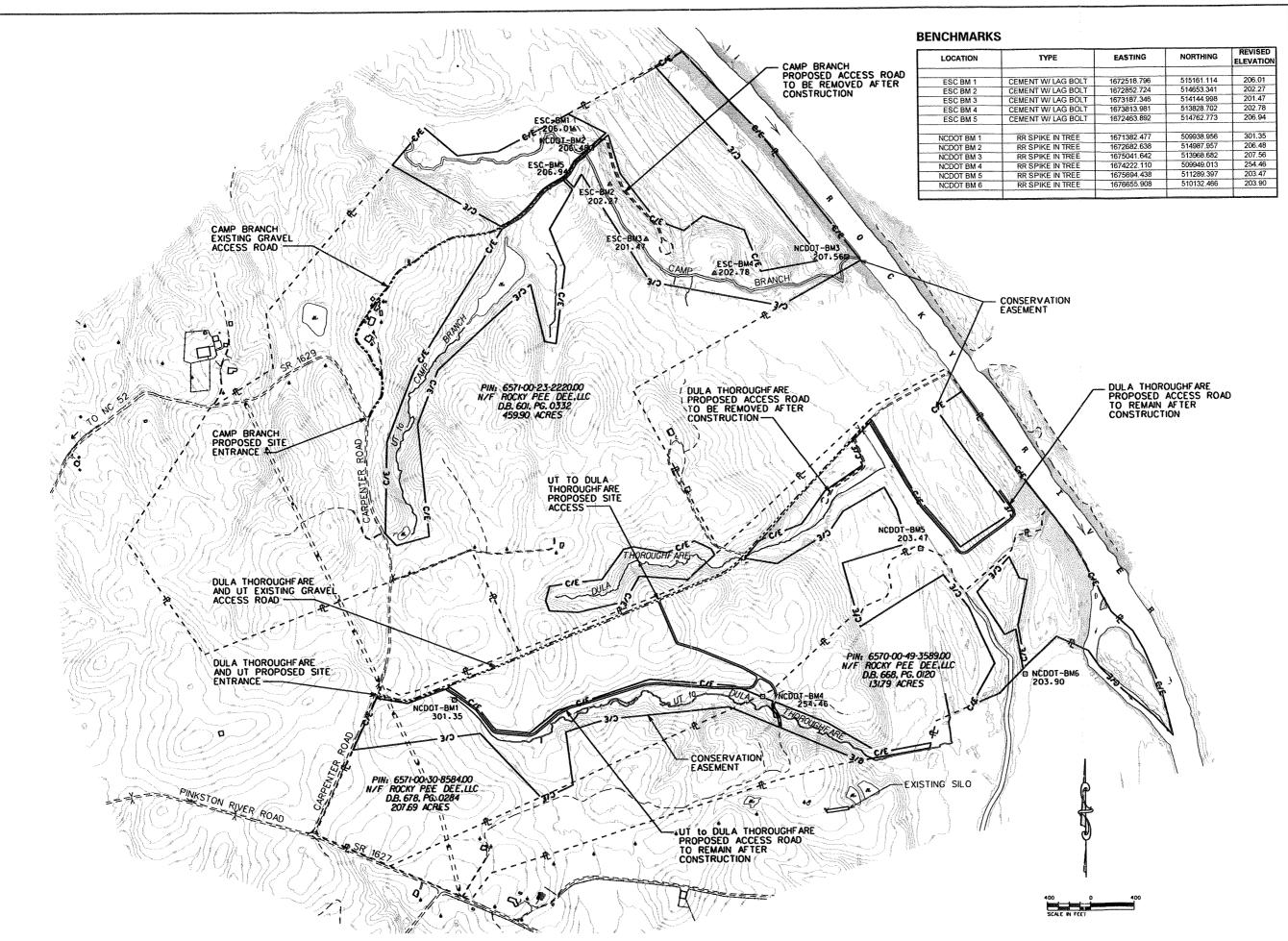
PROPOSED FEATURES AND STRUCTURES

RADIUS OF CURVATURE CENTER MARK
CHANNEL FORD
CROSS-VANE
MODIFIED CROSS-VANE
J-HOOK VANE
STEP CROSS-VANE
LOG VANE
ROOT WAD
TEMPORARY STAGING AREA, SOIL STOCKPILING
NEW CHANNEL
BORROW AREA
CHANNEL BACKFILL
MEANDER REVETMENT
RIPRAP APRON
IMPERVIOUS CHANNEL BLOCK
TOP OF RIFFLE
BOTTOM OF RIFFLE
CONSTRUCTED BERM
PROPOSED WOVEN WIRE FENCE
PROPOSED BARBED WIRE FENCE · · · · · · · · · · · · · · · · · · ·
PROPOSED SAFETY FENCE···································
PROPOSED SILT FENCE······
PROPOSED MAJOR CONTOURS755
PROPOSED MINOR CONTOURS
PROPOSED DIVERSION DITCH
LIMITS OF DISTURBANCE
PROPOSED ACCESS ROAD
PROPOSED CLEARING LIMITS
PROPOSED STONE OUTLET

Project:

BISHOP SITE STREAM / WETLAND RESTORATION PLAN

ANSON COUNTY, NORTH CAROLINA


Title:

ELEMENT SYMBOLOGY

Dsn. By:		Dwn. By:	
	JDC		MAF
Ckd. By:		Dote:	
	DGM	JUN	2005
Scole:			
		NO S	SCALE
ESC Pro	ect No.:		
l		04-	212

SHEET

1B

	REVISIONS
Г	

BISHOP SITE STREAM / WETLAND RESTORATION **PLAN**

ANSON COUNTY, NORTH CAROLINA

SITE **ACCESS**

Osn. By:		Dwn. By:	
	JDC		MAF
Ckd. By:		Date:	
	DGM	JUN	2005
Scole:			

AS SHOWN

04-212

ESC Project No.:

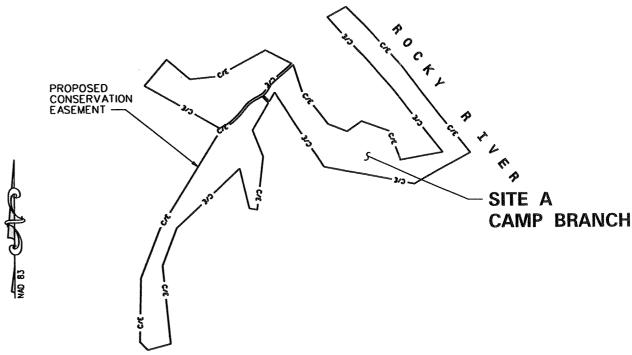
SHEET

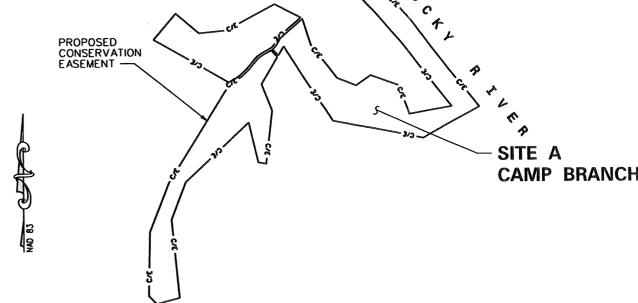
CONSTRUCTION SEQUENCE

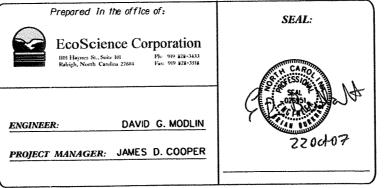
- 1. MOBILIZE EQUIPMENT AND MATERIALS TO CAMP BRANCH SITE.
- 2. ESTABLISH ACCESS ROADS AND STAGING AREAS AS DEPICTED ON THE PLANS OR AS DIRECTED BY THE PROJECT MANAGER AND MARK CONSTRUCTION EQUIPMENT ACCESS LOCATIONS WITH VISIBLE MARKERS. CONSTRUCTION EQUIPMENT SHALL BE MAINTAINED AND SERVICED WITHIN THE LIMITS OF THE ESTABLISHED STAGING AREAS. THE CONTRACTOR SHALL BE RESPONSIBLE FOR MAINTAINING ALL STAGING AREAS IN AN ENVIRONMENTALLY SENSITIVE MANNER.
- INSTALL IMPROVEMENTS TO SITE ACCESS ROAD IF REQUIRED AND INSTALL TEMPORARY EROSION CONTROL MEASURES (I.E., SILT FENCE, STONE OUTLETS, ETC.) AS REQUIRED.
- AT THE END OF EACH DAY OF CONSTRUCTION, THE CONTRACTOR SHALL PROVIDE TEMPORARY SEED AND MULCH AND APPLY COIR FIBER MATTING, AS APPROPRIATE, TO ALL DISTURBED AREAS. IN ADDITION, THE CONTRACTOR SHALL BE RESPONSIBLE FOR MAINTAINING ALL TEMPORARY EROSION CONTROL MEASURES ON A DAILY BASIS THROUGHOUT THE CONSTRUCTION PERIOD.
- 5. THE UT TO CAMP BRANCH SHALL BE DUG IN THE DRY EASTWARD FROM THE EXISTING ACCESS ROAD AND CONNECTED TO CAMP BRANCH. THE EXISTING LOW AREA PARALLEL TO THE UT SHALL BE FILLED WITH MATERIAL FROM THE UT EXCAVATION.
- 6. CAMP BRANCH AND THE ASSOCIATED FLOODPLAIN WORK SHALL BE DUG IN THE DRY WITH THE WASTE MATERIAL TEMPORARILY STOCKPILED BETWEEN THE PROPOSED CHANNEL AND THE EXISTING CHANNEL. THE PROPOSED PERMANENT FORD SHALL BE CONSTRUCTED AT THIS TIME, ALSO IN THE DRY. IT IS ASSUMED THE CONNECTION AT THE BOTTOM END OF THE PROJECT CAN BE MADE AT THIS TIME WITHOUT CONSEQUENCES.
- 7. A PUMP-AROUND OPERATION SHALL BE PROVIDED JUST ABOVE THE DIVERGENCE OF EXISTING CAMP BRANCH AND THE PROPOSED CAMP BRANCH TO FACILITATE THE CONSTRUCTION OF THE PROPOSED CHANNEL BLOCK AND CONNECTION OF EXISTING CAMP BRANCH TO THE NEW CHANNEL.
- 8. THE EXISTING CAMP BRANCH SHALL BE BACKFILLED WITH THE STOCKPILED MATERIAL FROM THE EXCAVATION OF THE NEW CHANNEL. THE EXISTING DITCH SECTION PARALLELING THE EXISTING ACCESS ROAD SHALL BE EXTENDED TO TIE TO THE NEW LOCATION CAMP BRANCH. NO WORK IS ANTICIPATED AT THE PIPE AT THE BREAK IN THE CONSERVATION EASEMENT.
- 9. THE PROPOSED FORD ACROSS THE EXISTING ACCESS ROAD AT THE UT TO CAMP BRANCH SHALL BE CONSTRUCTED FOLLOWED BY THE PROPOSED CHANNEL BLOCK. THE PURPOSE OF THE BLOCK IS TO DIRECT FLOW FROM THE UT HEADWATER ALONG THE NEW UT CHANNEL TO CAMP BRANCH.
- 10. THE CONTRACTOR SHALL COMPACT THE PROPOSED FILL IN THE FILLED CHANNELS TO 90 PERCENT PROCTOR. THE PROPOSED CHANNEL BLOCKS SHALL HAVE A CORE OF IMPERVIOUS SELECT MATERIAL AS SPECIFIED IN THE PROJECT DETAIL AND SPECIAL PROVISIONS.
- 11. THE CONTRACTOR SHALL PLACE FINAL WASTE MATERIAL IN AREAS DESIGNATED ON THE PLANS AND AT THE DIRECTION OF THE PROJECT MANAGER. STOCKPILE AREAS SHALL BE PROTECTED BY SILT FENCING
- 12. ONCE CONSTRUCTION IS COMPLETE, THE CONTRACTOR SHALL REMOVE ALL CONSTRUCTION MATERIALS FROM THE CONSERVATION EASEMENT, DISPOSE OF THEM IN AN APPROVED DUMP SITE AND SCARIFY ANY COMPACTED AREAS AS DIRECTED BY THE PROJECT MANAGER. TO COMPLETE SEEDING AND MULCHING, ALL DISTURBED AREAS SHALL BE DISKED OR PLOWED TO CREATE MICRO TOPOGRAPHY TO THE SATISFACTION OF THE PROJECT MANAGER AND PERMANENTLY SEEDED AND MULCHED. STONE APPLIED TO ACCESS ROADS, IF ANY, SHALL REMAIN OR BE REMOVED AS INDICATED ON PLAN SHEET 2.

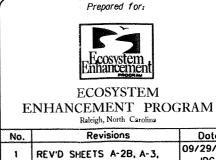
INDEX OF SHEETS

CAMP BRANCH

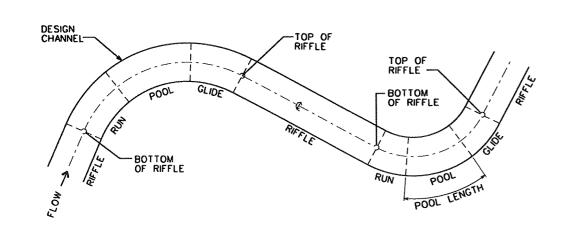

- A: CONSTRUCTION SEQUENCE
- A-1: MORPHOLOGICAL TABLE / SHEAR STRESS TABLE
- A-1A: POOL RADIUS TABLE / RIFFLE TABLE
- A-2: TYPICAL SECTIONS
- A-2A, A-2B: GENERAL DETAILS
 - A-2C: NEW CHANNEL CENTERLINE DATA
 - A-3: SUMMARY OF QUANTITIES /SUMMARY OF EARTHWORK
 - A-4: EXISTING CONDITIONS
 - A-5: NEW CHANNEL LAYOUT
- A-6, A-6A: SITE PLAN
 - A-7: PROFILE CAMP BRANCH -C- CHANNEL
 - A-7A: AS-BUILT PROFILE CAMP BRANCH -C- CHANNEL
 - A-8: PROFILE UT to CAMP BRANCH -A- CHANNEL
- A-8A: AS-BUILT PROFILE UT to CAMP BRANCH -A- CHANNEL
- A-EC1, A-EC1A: EROSION CONTROL PLAN
 - A-EC2: EROSION CONTROL DETAILS
 - A-L1: PLANTING PLAN
 - X1-X4: CROSS-SECTIONS
 - X1A-X4A: AS-BUILT CROSS-SECTIONS

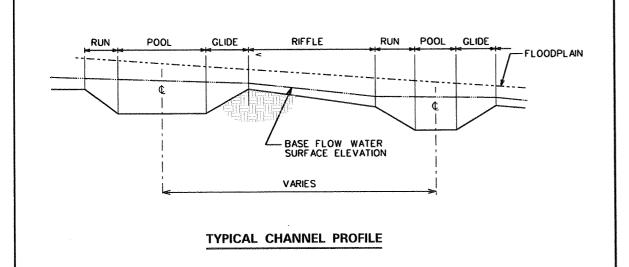

SITE A CAMP BRANCH


TYPE OF WORK:

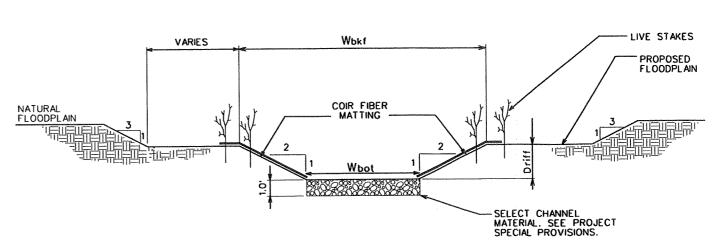

STREAM AND WETLAND RESTORATION / ENHANCEMENT

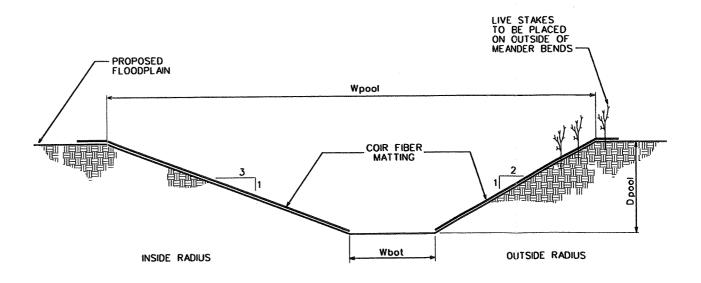
- . STREAM RESTORATION / ENHANCEMENT . NEW CHANNEL CONSTRUCTION
- FLOODPLAIN GRADING
 SITE PLANTING




2 AS-BUILT

JDC MAF JUL 2007 04-212 SHEET Dote 09/29/05 JULY 2007


JDG


TYPICAL CHANNEL PLAN VIEW

	CROSS-SECTION DIMENSIONS						
REACH	Wbkf (ft.)	Wbot (ft.) Riffle	Driff (ft.)	Wpool (ft.)	Wbot (ft.) Pool	Dpool (ft.)	Width/Depth Ratio
CAMP BRANCH	19	11	2	25	10	3	11.9
UT TO CAMP BRANCH	6	2.8	8.0	8	2.5	1.1	10

TYPICAL RIFFLE CROSS-SECTION

TYPICAL POOL CROSS-SECTION

Client:

Project:

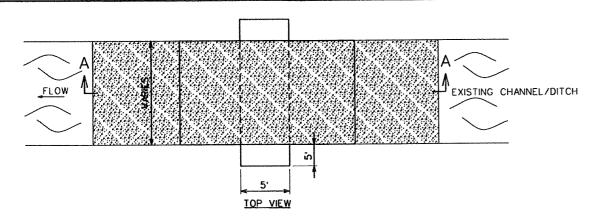
BISHOP SITE STREAM / WETLAND RESTORATION PLAN

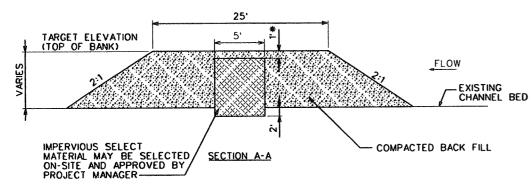
ANSON COUNTY, NORTH CAROLINA

Title:

TYPICAL SECTIONS

CAMP BRANCH


	Dsn. 8y:		Đ⊯n. By:	
		JDC		MAF
	Ckd. By:		Date:	
		DGM	JUN	2005
1	Scole			


NO SCALE

ESC Project No.:

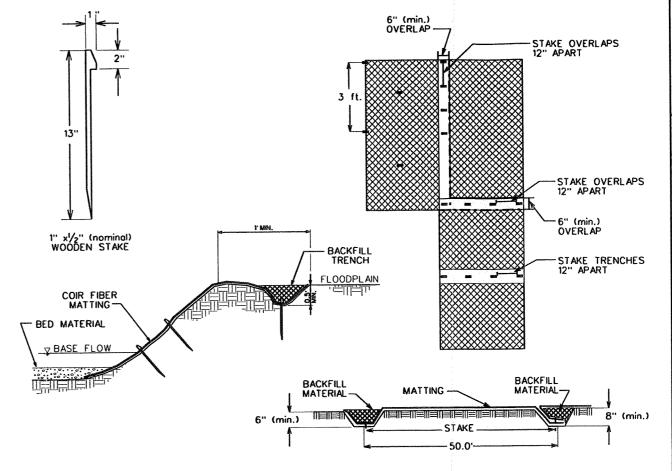
04-212 SHEET

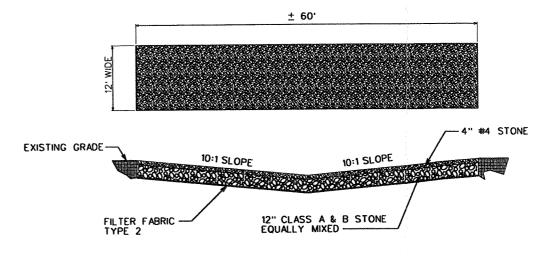
A-2

NOTES:

- CHANNEL PLUG WILL BE INITIALLY FILLED WITH AVAILABLE WASTE AND COMPACTED TO NINETY-FIVE PERCENT STANDARD PROCTOR.
- 2. THEN A CENTRAL PORTION FIVE FEET WIDE WILL BE REMOVED AND REPLACED WITH IMPERVIOUS SELECT MATERIAL (SEE SPECIAL PROVISIONS).
- 3. THE IMPERVIOUS SELECT MATERIAL WILL BE KEYED INTO THE ORIGINAL BANK A MINIMUM OF FIVE FEET AND INTO THE ORIGINAL BED A MINIMUM OF TWO FEET.

IMPERVIOUS CHANNEL BLOCK **CAMP BRANCH**

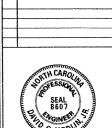

IMPERVIOUS CHANNEL BLOCK UT to CAMP BRANCH


NOTES:

- THE IMPERVIOUS SELECT MATERIAL WILL BE KEYED INTO THE ORIGINAL BANK A MINIMUM OF TWO FEET AND INTO THE ORIGINAL BED A MINIMUM OF ONE FOOT.
- * 2. IN THE UT TO CAMP BRANCH CHANNEL ONLY, THE IMPERVIOUS SELECT MATERIAL SHALL EXTEND TO THE TOP OF THE IMPERVIOUS CHANNEL BLOCK AND HAVE NO BACKFILL LAYER ON TOP.

- CONTRACTOR TO EXCAVATE APPROXIMATELY ONE FOOT DEEP CHANNEL FOR PERMANENT STREAM CROSSING.
- 2. LAY FILTER FABRIC ALONG ENTIRE LENGTH OF BED.
- 3. FILL WITH EIGHT INCHES OF "CLASS A" STONE, FOLLOWED BY FOUR INCHES OF #4 STONE TO BRING FINISHED GRADE UP TO LEVEL OF PROPOSED STREAM BED.

PERMANENT CHANNEL FORD UT to CAMP BRANCH



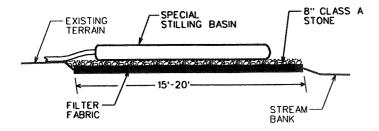
COIR FIBER MATTING DETAIL

- CONTRACTOR TO EXCAVATE APPROXIMATELY SIXTEEN INCHES DEEP CHANNEL FOR PERMANENT STREAM CROSSING.
- 2. LAY FILTER FABRIC ALONG ENTIRE LENGTH OF BED.
- 3. FILL WITH TWELVE INCHES OF "CLASS A" AND "CLASS B" STONE EQUALLY MIXED, FOLLOWED BY FOUR INCHES OF #4 STONE TO BRING FINISHED GRADE UP TO LEVEL OF PROPOSED STREAM BED.

PERMANENT CHANNEL FORD **CAMP BRANCH**

BISHOP SITE STREAM / WETLAND RESTORATION **PLAN**

ANSON COUNTY, NORTH CAROLINA

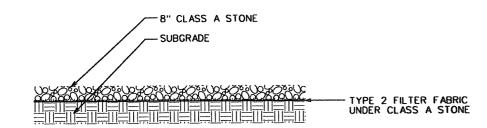

GENERAL DETAILS

CAMP BRANCH

	JDC		MAF
Ckd. By:		Dote:	
	DGM	JUN	2005
Scole:			
		NO	SCALE
ESC Pro	ject No.:		
		04-	212

SHEET

A-2A



Λ

NOTE:

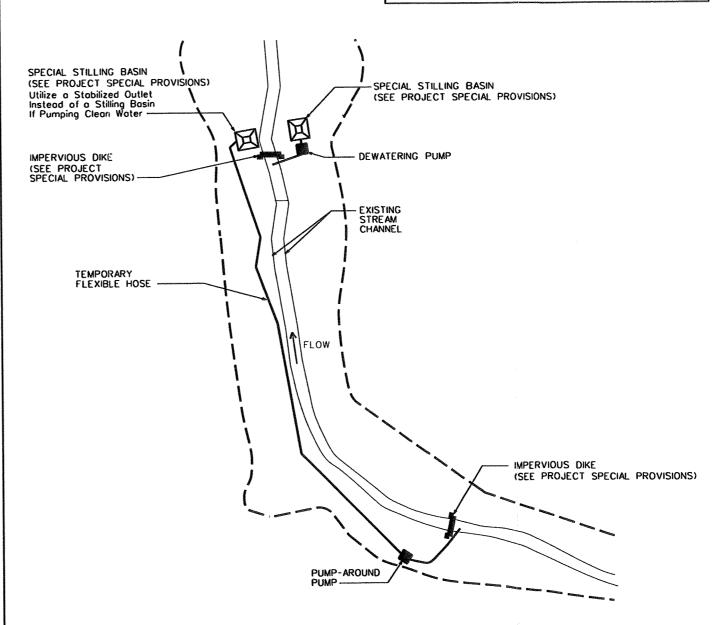
1. WHEN PUMPING CLEAN WATER, THE CONTRACTOR MAY PROVIDE A STABILIZED OUTLET BY OMITTING THE SPECIAL STILLING BASIN AND PROVIDING THE ROCK PAD AS SHOWN WITH MINIMUM DIMENSIONS 10 FEET WIDE BY 15 FEET LONG.

SPECIAL STILLING BASIN WITH ROCK PAD

NOTES:

1. THIS IS THE MINIMUM ACCEPTABLE SECTION.

ACCESS ROAD SECTION DETAIL


SUGGESTED OR EQUIVALENT

NOTES:

- ALL EXCAVATION SHALL BE PERFORMED IN ONLY DRY OR ISOLATED SECTIONS OF CHANNEL.
- IMPERVIOUS DIKES ARE TO BE USED TO ISOLATE WORK FROM STREAM FLOW WHEN NECESSARY.
- 3. ALL GRADED AREAS SHALL BE STABILIZED WITHIN 24 HOURS.
- MAINTENANCE OF STREAM FLOW OPERATIONS SHALL BE INCIDENTAL
 TO THE WORK. THIS INCLUDES POLYETHYLENE
 SHEETING, DIVERSION PIPES, PUMPS AND HOSES.
- 5. PUMPS AND HOSES SHALL BE OF SUFFICICIENT SIZE TO DEWATER THE WORK AREA.

SEQUENCE OF CONSTRUCTION FOR TYPICAL WORK AREA

- 1. INSTALL SPECIAL STILLING BASIN(S).
- 2. INSTALL UPSTREAM PUMP AND TEMPORARY FLEXIBLE HOSE.
- PLACE UPSTREAM IMPERVIOUS DIKE AND BEGIN PUMPING OPERATIONS FOR STREAM DIVERSION.
- PLACE DOWNSTREAM IMPERVIOUS DIKE AND PUMPING APPARATUS. DEWATER ENTRAPPED AREA. AREA TO BE DEWATERED SHALL BE EQUAL TO ONE DAY'S WORK.
- 5. PERFORM STREAM RESTORATION WORK IN ACCORDANCE WITH THE PLANS.
- EXCAVATE ANY ACCUMULATED SILT AND DEWATER BEFORE REMOVAL OF IMPERVIOUS DIKES. REMOVE IMPERVIOUS DIKES, PUMPS, AND TEMPORARY FLEXIBLE HOSE. (DOWNSTREAM IMPERVIOUS DIKES FIRST).
- 7. ALL GRADING AND STABILIZATION MUST BE COMPLETED AT THE END OF EASCH DAY WITHIN THE PUMP AROUND AREAS BETWEEN THE IMPERVIOUS DIKES. THE IMPERVIOUS DIKE LOCATIONS AS SHOWN ON THIS SHEET ONLY SHOW THE UPPER AND LOWER EXTENT OF WORK FOR EACH STREAM SEGMENT. THE CONTRACTOR IS RESPONSIBLE FOR DETERMINING THE LOCATION OF THE IMPERVIOUS DIKE(S) FOR EACH DAY'S WORK.
- REMOVE SPECIAL STILLING BASIN(S) AND BACKFILL. STABILIZE DISTURBED AREA WITH SEED AND MULCH.

TYPICAL PUMP-AROUND OPERATION

Raleigh, North Carolina

REVISIONS

LAND QUALITY
COMMENTS

Client:

Project:

BISHOP SITE STREAM / WETLAND RESTORATION PLAN

ANSON COUNTY, NORTH CAROLINA

Title:

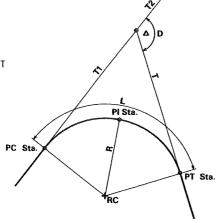
GENERAL DETAILS

CAMP BRANCH

Dsn. By: Dwn. By:			
Dsn. By:		Dwn. By:	
	JDC	MAF	
Ckd. By:		Date:	
	DGM	JUN 2005	

NO SCALE

ESC Project No.: 04-212


SHEET

A-2B

-A- CHANNEL CURVE DATA UT to CAMP BRANCH

16 7 6 || PJ.Sta.4·02:54 D • 76 33' 52:49' (RT) T • 12:63 L • 21:38 PJ.Sta.O·38.0I D • 74 IG 25.56 (RT) T • 12.12 L • 20.74 PJ.Sta.2·18.05 D • 68° 07° 30.30° (LT) T • 12.82 L • 22.56 PJ.Sta.5:72J9 P.J. Sta. 5-72.19 D = 40° 25' 16.56' (LT) T = 6.99 L = 13.40 R = 19.00 P.C. Sta. 5-65.19 P.T. Sta. 5-78.60 Back = N 03° 18' 56.67' W L • 2014 R • 16,00 P.C. Sta, 0-25,90 P.T. Sta, 0-46,64 Back • N 32° 49' 26,38' W Ahead • N 41' 26' 59,18' E R • 1900 P.C. Sia. 2:05.23 P.T. Sia. 2:27.79 Back • N. 64 33' 32.57' E R • 16.00 P.C.Sta. 3.89.91 P.T.Sta. 4.11.29 Back . N 66 47' 17.71" W Ahead • N 03 27 57.74 W Ahead • N 09' 46' 34,78" E Aread . N 43 44 13.22 W 12 17 7 2 P.J. Sia. 6-05.94 D • 72' 37' 10.89' (RT) T • 22.05 L • 38.02 R • 30.00 P.C. Sia. 5-83.90 P.T. Sia. 6-21.92 Back • N. 43' 44' 13.22' W PJ.Sto.2·5622 D • 98° 30° 42.0F (RT) T • 18.57 L • 27.51 PJ.Sta.4·39J9 D • 89' 27' 54.33' (LT) T • 16.84 PJ.Sta.0-68.07 D • 78 08 07 J2 (LT) T • 13.80 1 - 1380 L - 2318 R - 17.00 P.C. Sto. 0-54.27 P.T. Sto. 0-77.45 Back - N 4f 26' 5918' E Ahead - N 36' 4f' 07.94' W L · 26.54 R · 17.00 R • 16.00 P.C. Sto. 2:37.64 P.T. Sto. 2:65,15 Back • N 03:27'57,74' W P.C.Sta. 4·22.35 P.T.Sta. 4·48.89 Back • N 09 46' 34.78' E Ahead . S 84 57' 15.73" E Ahead . N 79 41 19.55 W Ahead . N 28" 52" 57.67" E 3 8 13 P.J. Sta. 0-97-92 D • 79' 07' 21.88' (RT) T • 14.87 L • 24.86 R • 18.00 P.C. Sta. 0-83.05 P.T. Sta. 1-07.90 Back • N 36' 41' 07.94' W Ahead • N 42' 26' 13.94' E P.I.Sta.2-98.33 D · 106 02 32.52 (LT) T · 22.58 L · 31.46 R · 17.00 P.I. Sta. 4·76.92 D · 89 36' 31.86' (RT) T · 14.90 L · 23.46 R · 15.00 P.C. Sta. 2-75.75 P.T. Sta. 3-07.21 Back • S. 84 57' 15.73' E Ahead • N. 10' 59' 48.25' W P.C. Sta. 4-62.03 P.T. Sta. 4-85.49 Back • N 79 41 19.55 W Ahead • N 09 55 12.3 FE 4 9 14 P.J. Sta. 5:16.43 D - 105' 44' 43.75' (LT) T - 28.43 L - 38.31 R - 2000 P.J.Sta.3*29.71 D • 55*58*42.87*(RT) T • 10.63 L • 19.54 R • 20.00 PJ.Sta.I·40.33 D • IIO 29 IOJF (LT) T • 21.62 L • 28.93 R • ISOO P.C. Sta. 4.88.00 P.T. Sta. 5.26.31 Back • N 09 55' 12.31' E P.C. Sta. 3-19.09 P.T. Sta. 3-38.63 Back • N 10 59 48.25 W P.C.Sto.1-18.72 P.T.Sto.1-47.64 Back * N 42° 26′ 13.94° E Ahead * N 68° 02′ 56.77° W Ahead • S 80° 10° 28.56° W Ahead • N 44 58 54.61 E 10 5 15 P.J.Sto.1:94.54 D • 132:36' 287.4" (RT) T • 38.73 L • 39.35 R • 17.00 P.J. Sta. 3-73.48 D - III* 46' 12.33' (LT) T - 20.67 L - 27.31 R - 14.00 PJ.Sta.5.48.99 P.J. Sta. 5-48.99 D • 96 30' 34.71' (RT) T • 20.17 L • 30.32 R • 18.00 P.C. Sta. 5-28.82 P.T. Sta. 5-59.14 Back • S 80' 10' 28.56' W Aband • N 05' 18' 56.67' W P.C.Sta.I-55.BI P.T.Sta.I-95.J5 Back N 68 02 56.J7 W P.C. Sto. 3-52.81 P.T. Sto. 3-80.12 Back • N 44 58 54.61 E Ahead • N 64 33' 32.57° E Ahead . N 66° 47' 17.71" W Ahead . N 03" 18" 56.67" W

- T/T1= tangent length
- R= radius of curvature
- PT Sta. point of terminus (where arc/pool ends)

-C- CHANNEL CURVE DATA CAMP BRANCH

		CAIVIP BRAINCH		
PJ.Sta.0-36.53 D - 607 l6' 42.22' (LT) T - 34,94 L - 63,12 R - 60,00 PC.Sta.0-01.69 PJ.Sta.0-64,82 Back - S 49' 04' 03,77' E Alead - N 70' 39' 14,00' E	6 P.J.Sta. 3-72.28 D · 55' 40' 21.65' (RT) T · 30.10 L · 55.39 R · 57.00 P.C.Sta. 3-42.18 P.T.Sta. 3-97.57 Bock · N 80' 38' 15.02' E Aread · S 43' 41' 23.33' E	II P.J. Sta. 7-58.99 D • 64 20' 30.56' (RT) T • 25.16 L • 44.92 R • 40.00 P.C. Sta. 7-33.83 P.T. Sta. 7-78.75 Bock • S 48' 24' 21.44' E Ahead • S 15' 56' 09.12' W	16 P.J. Sta. II	[2] P.J. Stat5-75.23 D • 85' 33' 33.31' (RT) T • 53.67 L • 86.61 R • 58.00 P.C. Sta. 15' 21.55 P.T. Sta. 16' 08J7 Back • \$ 68' 59' 42.35' E Ahead • \$ 16' 33' 50.97' W
[2] PJ.Sia.I-12.69 D • 60' 49' 54.34' (RT) T • 24.66 L • 44.59 R • 42.00 P.C.Sia.0-88.03 P.T.Sia.I-32.62 Back • N 70' 39' 14.00' E Ahead • S 48' 30' 51.66' E	7 PJ.Sta.4·98.65 D • 60' 58' 29.93' (RT) T • 34.74 L • 62.79 R • 59.00 P.C. Sta.4·63.92 P.T. Sta.5·26.70 Back • S • 43' 41' 23.33' E Ahead • S • 17' 17' 06.60' W	[12] P.J. Sta. 8-34.31 D • 73-40' 37.65' (LT) T • 46.45 L • 79.73 R • 62.00 P.C. Sta. 7-87.86 P.T. Sta. 8-67.59 Back • S 15-56' 09.12' W Ateod • S 07' 44' 28.49' E	[7] P.J. Sta. 2-12.29 D • 46 23' 08.26' (RT) T • 32.56 L • 61.53 R • 76.00 P.C. Sta. 1-79.73 P.J. Sta. 2-41.26 Back • S 61 4' 41.94' E Ahead • S 14' 51' 333.69' E	22 P.J. Sta. 16-54.66 D = 59' 35' 37.24' (LT) T = 25.77 L = 46.81 R = 45.00 P.C. Sta. 16-28.89 P.T. Sta. 16-75.70 Back = S 16' 33' 50.97' W Ahead = S 43' 01' 46.27' E
3 PJ.Sta.I-67-58 D • 67 24 22.94 (LT) T • 28.01 L • 49.41 R • 42.00 P.C.Sta.I-39-57 P.T.Sta.I-88.98 Bock • S 48 30 51.66 E Aread • N 64 04 45.40 E	8 P.J.Sta.5-57.00 D • 57' 04' 22.74' (LT) T • 22.30 L • 40.84 R • 41.00 P.C.Sta.5-34.70 P.T.Sta.5-75.54 Back • S 17'17' 06.60' W Ahead • S 39'47' 16.14' E	[13] P.J.Sta.9-07.54 D · 55 30' 41.31' (RT) T · 24.21 L · 44.57 R · 46.00 P.C.Sta.8-83.34 P.J.Sta.9-27.90 Back · S 07' 44' 28.49' E Ahead · S 02' 13' 47.17' E	[18] P.J. Sta. 12:85.22 D • 50' 09' 50:65' (LT) T • 23:87 L • 44:65 R • 51:00 P.C. Sta. 12:61:35 P.T. Sta. 13:06:00 Back • S 14' 51' 33:69' E Ahead • S 65' 01' 24:33' E	23 P.J. Sto. IT *11.39 D * 55* 38* 51.63* (RT) T * 23.75 L * 43.71 R * 45.00 P.C. Sto. 16*87.64 P.T. Sto. IT *31.34 Bock * 5 43* 01* 46.27* E Aread * S 12* 37* 05.36* W
4 PJ.Sta.2-35.99 D - 56 54' OI.41' (RT) T - 27.09 L - 49.66 R - 50.00 P.C.Sta.2-08.90 P.T.Sta.2-58.56 Back - N 64' 04' 45.40' E Ahead - S 59' O' 13.19' E	9 PJ.Sta.6·04.53 D • 64 OB'12.2r (RT) T • 25.06 L • 44.78 R • 40.00 P.C.Sta.5·79.47 P.T. Sta.6·24.25 Back • S 39'47'1614' E Ahead • S 24'20'56.07' W	[14] P.J.Sta.9-78.87 D • 68' 42' 44.90' (LT) T • 27.34 L • 47.97 R • 40.00 P.C.Sta.9-51.53 P.T.Sta.9-99.50 Back • S 02' 13' 47.17' E Ahead • S 70' 56' 32.07' E	[9] P.J. Slo.13-73.31 D • 57" 07" 16.21" (RT) T • 28.85 L • 52.84 R • 53.00 P.C. Slo.13-44.47 P.T. Slo.13-97.30 Back • S 65" 01" 24.33" E Ahead • S 07" 54" 08.12" E	24] P.J. Sta. I7-73.61 D • 71 I7' 34.89' (LT) T • 33.71 L • 58.48 R • 47.00 P.C. Sta. I7' 39.90 P.T. Sta. I7' 98.38 Back • S 12' 37' 05.36' W Aread • S 58' 40' 29.53' E
5	10 0	[5]	20 P. Co. 14-57 70	

PJ.Sta.10:50.09

P.J.Sla.10-50.09 D • 70' 56' 32.07" (RT) T • 29.21 L • 50.77 R • 41.00 P.C. Sta.10-20.87 P.T. Sta.10-71.64 Back • S 70' 56' 32.07" E Altead • Due South

Raleigh, North Carolina

REVISIONS

BISHOP SITE STREAM / WETLAND RESTORATION **PLAN**

ANSON COUNTY, NORTH CAROLINA

NEW CHANNEL CENTERLINE **DATA**

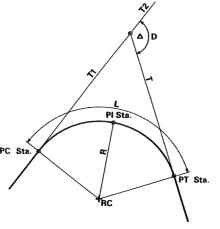
CAMP BRANCH

Osn. By:		Dwn. By:
	JDC	MAF
Ckd. By:		Date:
	DGM	JUN 2005
Scole:		
	1	NO SCALE

ESC Project No.:

SHEET

A-2C


04-212

PISta. center of pool

D= deflection angle (A) between tangent lines T2 and T measured along direction of travel

L= arc/poollength

PC Sta. - point of curvature (where arc/pool begins)

P.J.Sta.2-95.41 D = 40° 20° 31.79° (LT) T = 16.90 L = 32.39 R = 46.00

P.C. Sta. 2:78.51 P.T. Sta. 3:10.90 Back • S 59'01' 13.19' E Ahead • N 80'38' 15.02' E

PJ.Sta.6.72.41

P.J. Sla. 6-72-41 D • 72' 45' 17.57' (LT) T • 42.73 L • 73.65 R • 58.00 P.C. Sta. 6-29.68 P.T. Sta. 7-03.33 Bock • S 24' 20' 56.07' W Aheod • S 48' 24' 21.44' E

NOTE: FOR NEW CHANNEL LAYOUT, SEE SHEET A-5.

PJ. Sta. 14:67.39 D • 6f 05' 34.23' (LT) T • 37.77

R * 6410 P.C. Sta. 14·29.82 P.T. Sta. 14·97.86 Back • S 07° 54′ 08J2° E Ahead • S 68° 59′ 42.35° E

L • 68.24 R • 64.00

Λ

SUMMARY OF QUANTITIES

CAMP BRANCH -C- CHANNEL AND UT TO CAMP BRANCH -A- CHANNEL

	SUMMARY OF QUANTITIES Bishop Site Stream Wetland Restoration - Camp Branch					
ITEM	SPEC	ITEM DESCRIPTION	QUANTITIES	UNIT		
1	SP1	Mobilization	1	LS		
2	SP2	Construction Surveying	1	LS		
3	SP3	Grading	1	LS		
4	1056	Filter Fabric, Type 2	1850	SY		
5	1605	Temporary Silt Fence	3520	LF		
6	1610	Stone for Erosion Control, Class A	675	TON		
7	1610	Stone for Erosion Control, Class B	90	TON		
8	1610	Stone for Erosion Control, No. 4	30	TON		
9	1610	Stone for Erosion Control, ABC	925	TON		
10	1610	Stone for Erosion Control, No. 57	40	TON		
11	1615	Temporary Mulching	15	ACR		
12	1620	Seed for Temporary Seeding	975	LB		
13	1620	Fertilizer for Temporary Seeding	2.25	TON		
14	1630	Silt Excavation	300	CY		
15	1660	Permanent Seeding and Mulching	15	ACR		
16	1661	Seed for Repair Seeding	325	LB		
17	1661	Fertilizer for Repair Seeding	0.75	TON		
18	1662	Supplemental Seeding	325	LB		
19	SP6	Coir Fiber Matting, 900 gm	4000	SY		
20	SP8	Impervious Select Material	150	CY		
21	SP9	Pump Around Operation	1	LS		
22	SP10	Special Stilling Basin	2	EA		
23	SP12	Bare Root Seedlings	30450	ĒΑ		
24	SP13	Live Staking	4700	EA		
25	SP14	Invasive Plant Removal	1	LS		
26	SP5	Safety Fence	400	LF		
27	SP16	Channel Substrate	350	TON		
28	SP17	Disking/Scarification	10	ACR		

Estimates do include quantities for Class A stone and filter fabric for improved on-site access roads if required by weather conditions. The quantities are approximately 480 T of Class A Stone and 1333 SY filter fabric per 1000 linear feet of 12-foot wide improved access road as shown on the plans. ABC Stone is estimated to leave existing farm road in "AS IS or BETTER" condition. Note that all quantities are estimates for information and bid comparison purposes only.

SUMMARY OF EARTHWORK

QUANTITIES IN CUBIC YARDS

UT to CAMP BRANCH -A- CHANNEL

Xsection	Total Cut		EXCAVATION	Total Filli			FILL	BORROW	
	sq ft	cu ft	ENCAVATION	sq ft	cu ft	cuft + %	FILL	BORROW	WASIE
0	3.3	0		0	0				
80	5.3	344.0	13	1.3	52.0	62	2	0	10
133	8.7	371.0	14	5.9	190.8	229	8	0	5
228	5.7	684.0	25	4.5	494.0	593	22	0	3
320	5.7	524.4	19	2.8	335.8	403	15	0	4
436	5.7	661.2	24	3.1	342.2	411	15	0	9
600	5.7	934.8	35	0.0	254.2	305	11	. 0	23
		3519	130		1669		74	. 0	56
									56
Project Total 130				1				56	

APPROXIMATE QUANTITIES ONLY, UNCLASSIFIED EXCAVATION, BORROW EXCAVATION, FINE GRADING AND CLEARING AND GRUBBING WILL BE PAID FOR AT THE CONTRACT LUMP SUM PRICE FOR "GRADING." A SHRINKAGE FACTOR OF 1.2 WAS ASSUMED.

CAMP BRANCH -C- CHANNEL

Xsection	Total Cut		EXCAVATION	Total Fill			FILL	BORROW	WASTE
ASECTION	sq ft	cu ft	LACAVATION	sq ft	cu ft	cu ft + %	1166	DOMNOV	VVASIE
0	250.4	0		0	0				
120	136.6	23220.0	860	15.8	948.0	1138	42	0	818
260	157.2	20566.0	762	23.3	2737.0	3284	122	0	640
420	222.8	30400.0	1126	55.7	6320.0	7584	281	0	845
560	211.7	30415.0	1126	33.0	6209.0	7451	276	0	851
680	134.0	20742.0	768	81.8	6888.0	8266	306	0	462
760	163.2	11888.0	440	83.9	6628.0	7954	295	0	146
820	208.2	11142.0	413	80.9	4944.0	5933	220	0	193
900	259.2	18696.0	692	44.6	5020.0	6024	223	0	469
1060	192.3	36120.0	1338	94.8	11152.0	13382	496	0	842
1120	200.1	11772.0	436	112.4	6216.0	7459	276	0	160
1280	205.2	32424.0	1201	138.6	20080.0	24096	892	0	308
1360	291.5	19868.0	736	128,4	10680.0	12816	475	0	261
1460	307.1	29930.0	1109	178.6	15350.0	18420	682	0	426
1560	365.5	33630.0	1246	127.2	15290.0	18348	680	0	566
1700	517.9	61838.0	2290	108.8	16520.0	19824	734	0	1556
1800	512.3	51510.0	1908	0.0	5440.0	6528	242	0	1666
1810	0.0	2561.5	95	0.0	0.0	0	0	0	95
		446723	16545		140422		6241	0	10304
									10304
Project Total		16545						10304	

APPROXIMATE QUANTITIES ONLY, UNCLASSIFIED EXCAVATION, BORROW EXCAVATION, FINE GRADING AND CLEARING AND GRUBBING WILL BE PAID FOR AT THE CONTRACT LUMP SUM PRICE FOR "GRADING." A SHRINKAGE FACTOR OF 1.2 WAS ASSUMED.

REVISIONS

NOUANTITIES REVISED

Cienti

Project

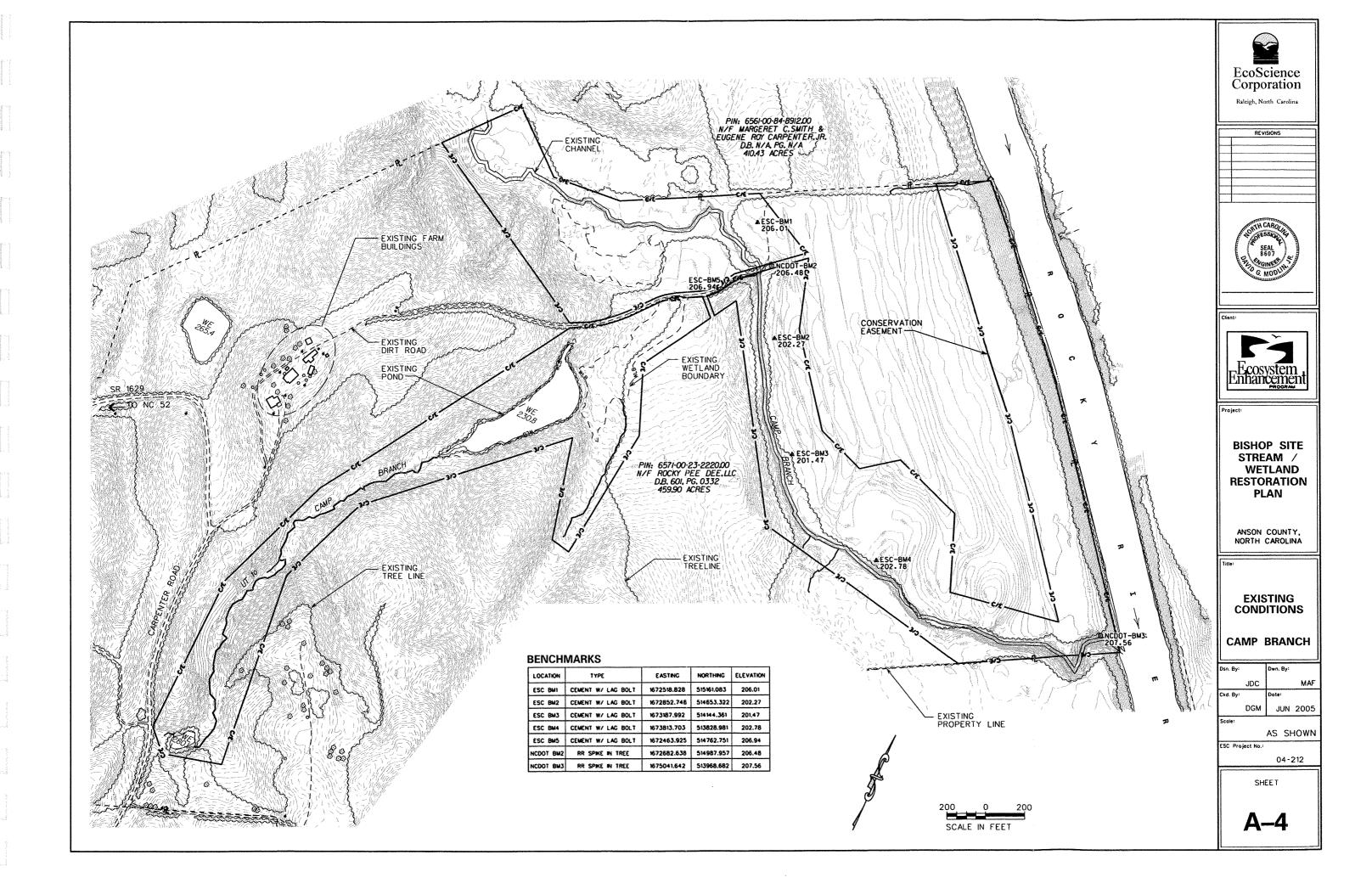
BISHOP SITE STREAM / WETLAND RESTORATION PLAN

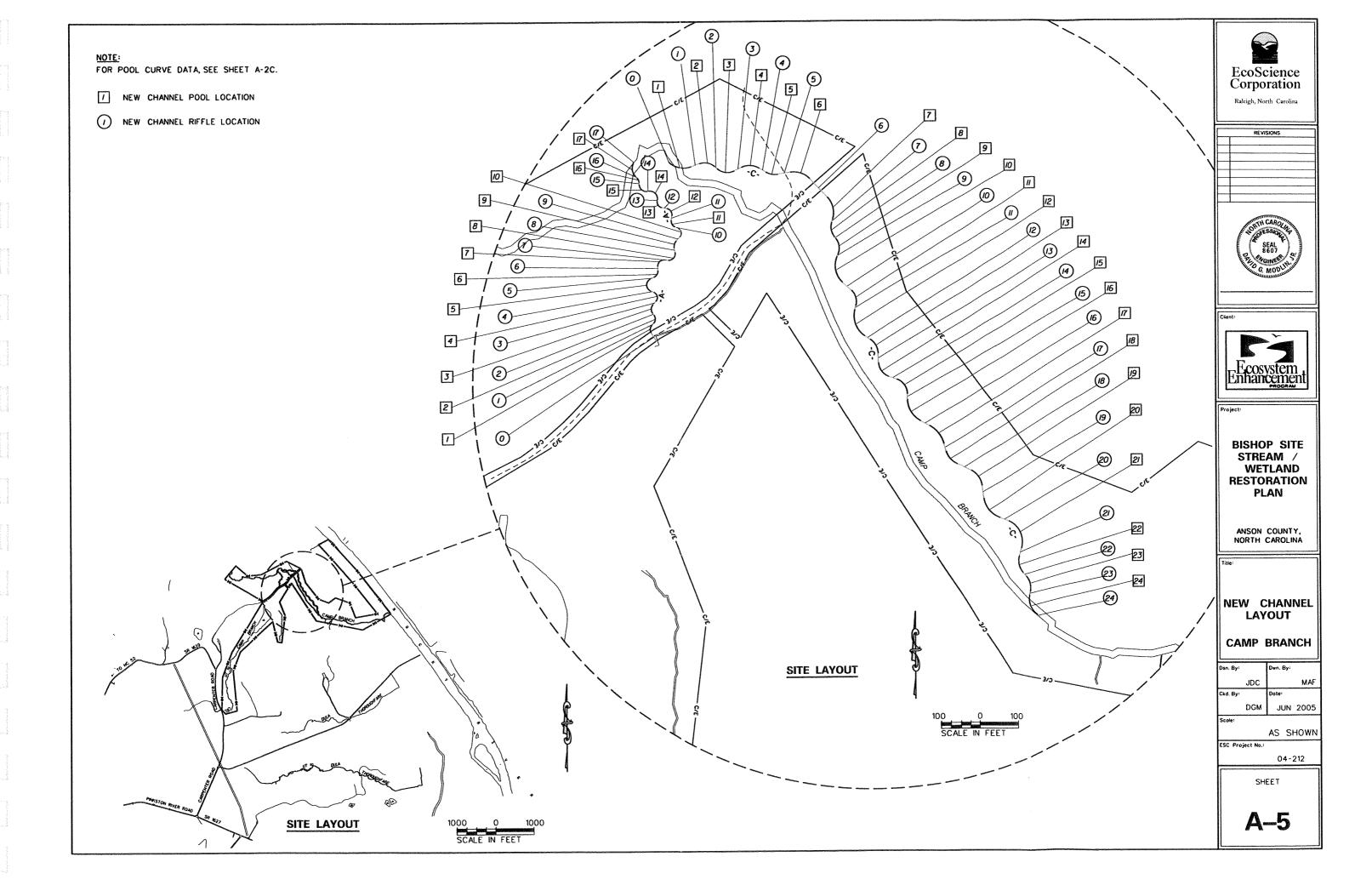
ANSON COUNTY, NORTH CAROLINA

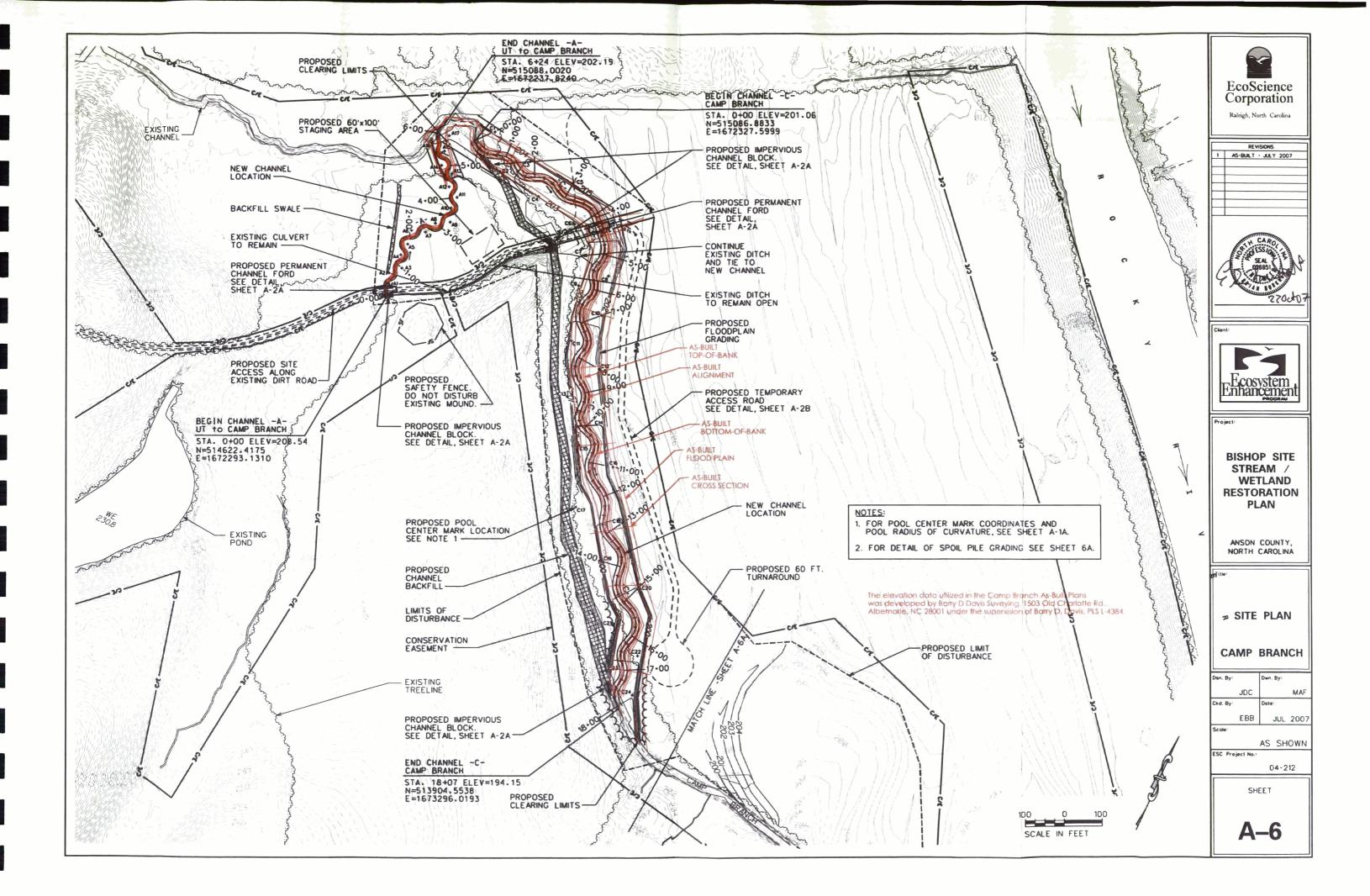
Title

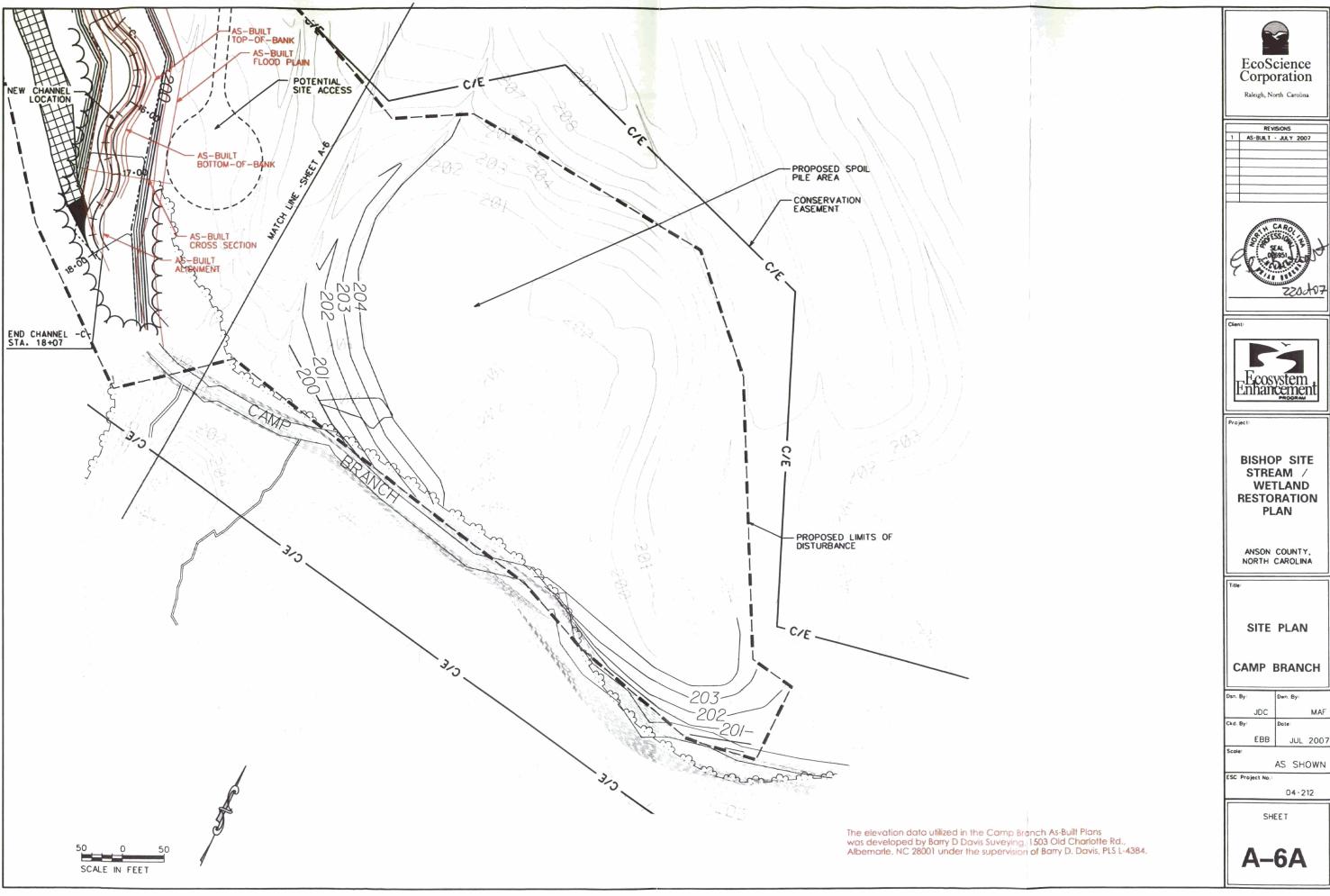
SUMMARY OF QUANTITIES / SUMMARY OF EARTHWORK

CAMP BRANCH

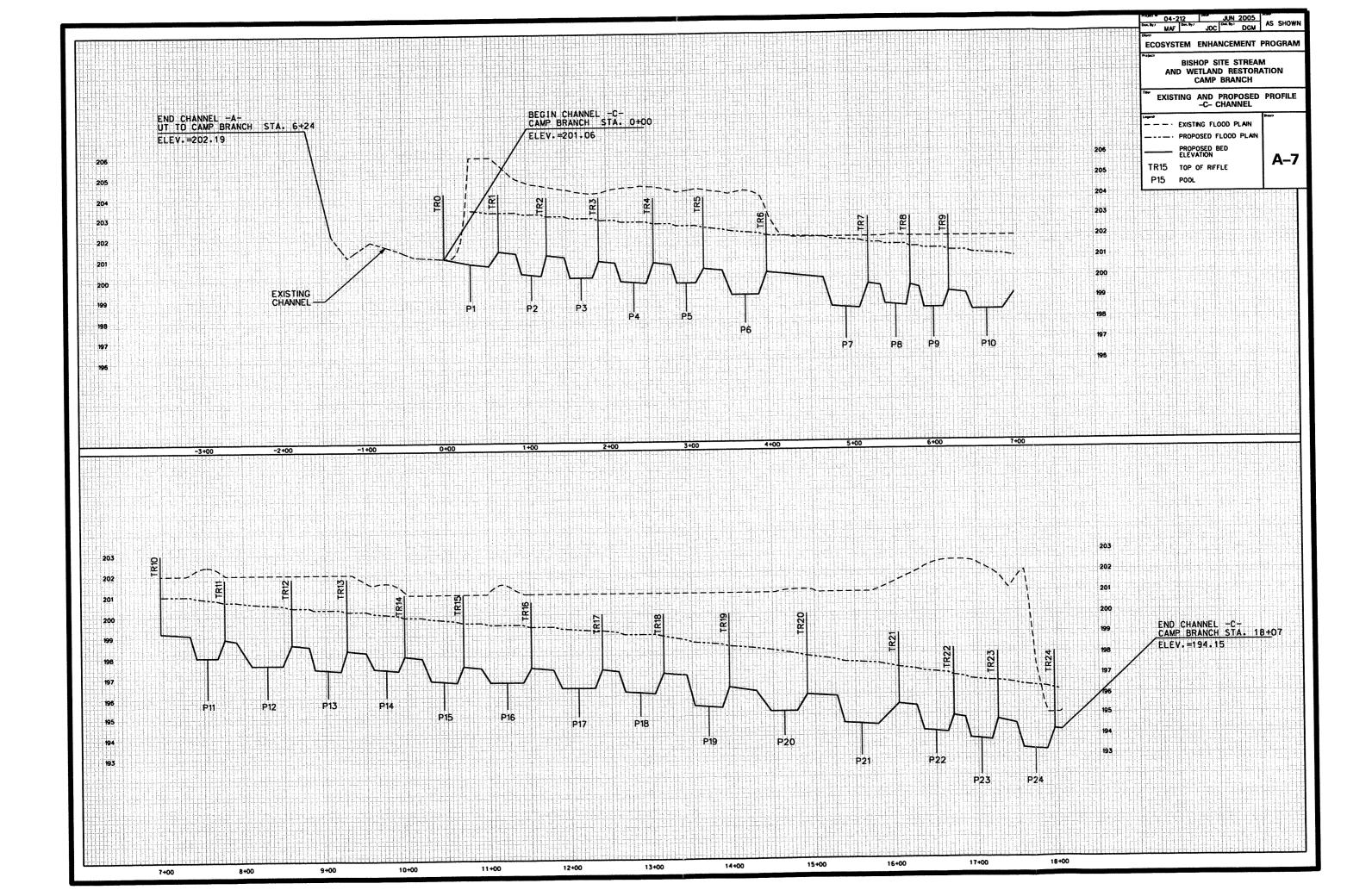

Dsn. By:		Dwn. By:	
	JDC		MAF
Ckd. By:		Oate:	
	DGM	JUN	2005
Scole:			
		NO	SCALE

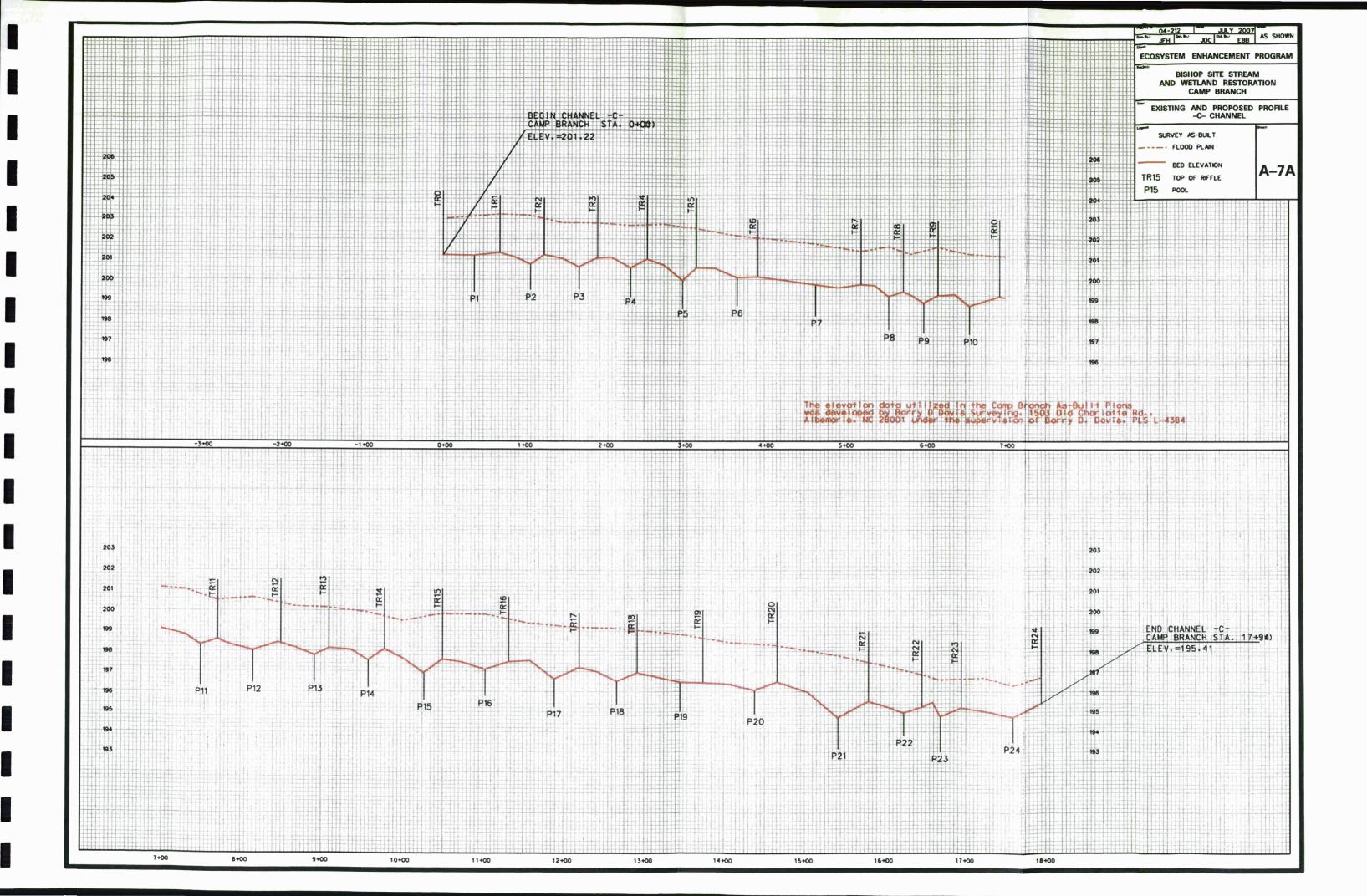

ESC Project No.

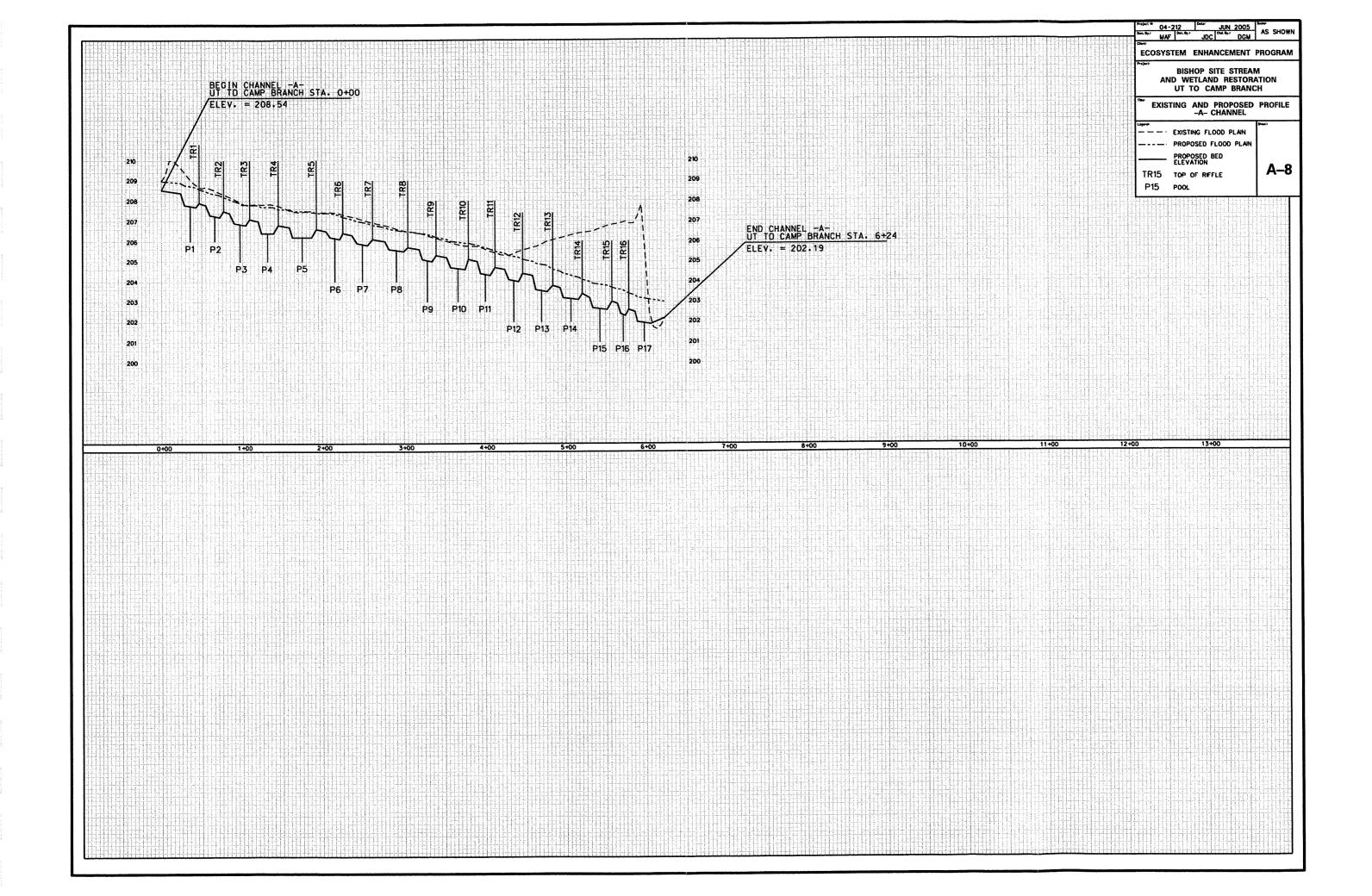

SHEET

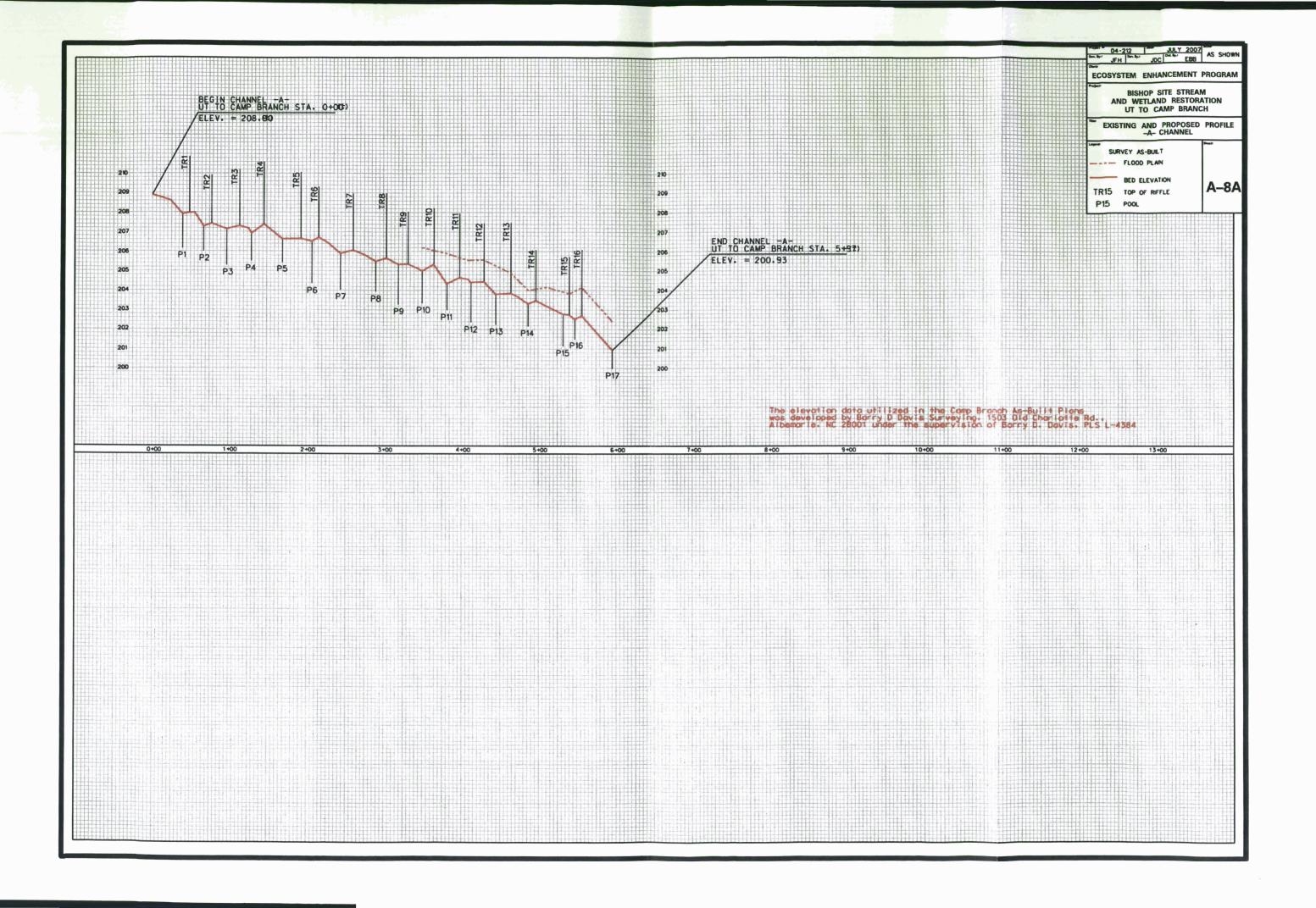

04-212

A-3

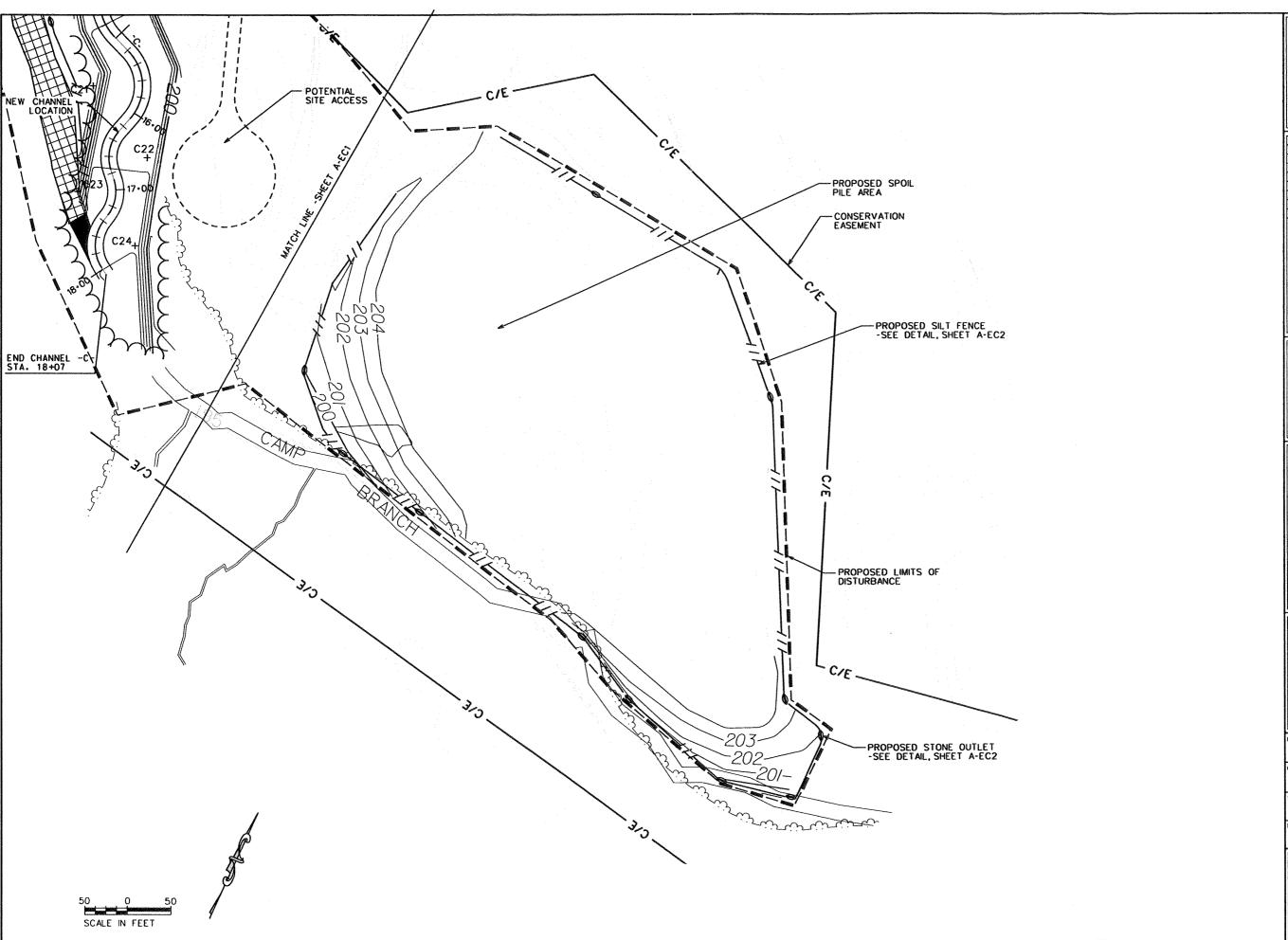









	JDC		MAF
Ckd. By:		Dote:	
	EBB	JUL	2007
Scale:			_



REVISIONS

Chent:

roject:

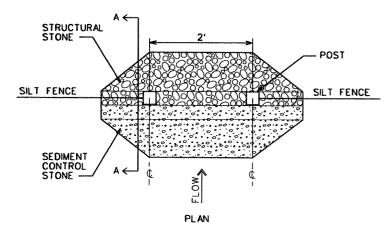
BISHOP SITE STREAM / WETLAND RESTORATION PLAN

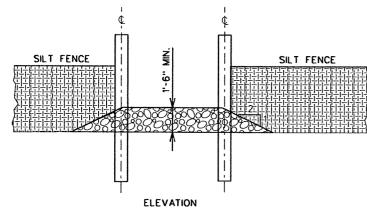
ANSON COUNTY, NORTH CAROLINA

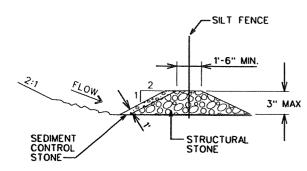
Title:

EROSION CONTROL PLAN

CAMP BRANCH

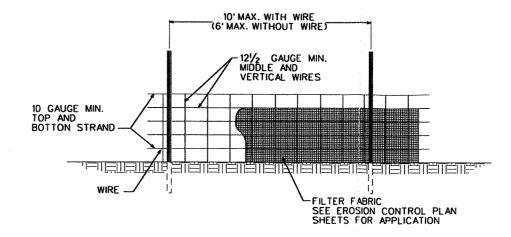

Dsn. By:		Dwn. By:	
	JDC		MAF
Ckd. By:		Date:	
	DGM	JUN	2005
Scole:			
		AS SI	HOWN

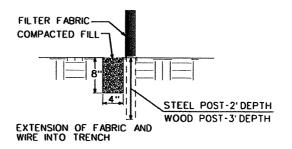

ESC Project No.:


04-212

SHEET

A-EC1A




CROSS-SECTION A-A

NOTES:

- STRUCTURAL STONE SHALL BE CLASS B STONE FOR EROSION CONTROL PURPOSES.
- 2. SEDIMENT CONTROL STONE SHALL BE NO. 5 OR NO. 57 STONE.

STONE OUTLET DETAIL

NOTES:

- USE WIRE A MINIMUM OF 32 INCHES IN WIDTH AND WITH A MINIMUM OF 6 LINE WIRES WITH 12 INCH STAY SPACING.
- 2. USE FILTER FABRIC A MINIMUM OF 36 INCHES IN WIDTH AND FASTEN ADEQUATELY TO THE WIRE AS DIRECTED BY THE ENGINEER.
- 3. PROVIDE 5 FOOT STEEL POST OF THE SELF-FASTENER ANGLE STEEL TYPE.
- 4. USE 6 FOOT WOOD POST WITH 3 INCH DIAMETER.

NCDOT BMP'S FOR CONSTRUCTION AND MAINTENANCE ACTIVITIES, 5.1.1, AUGUST 2003

TEMPORARY SILT FENCE
NCDOT STD, DWG. 1605.01

Client:

Project

BISHOP SITE STREAM / WETLAND RESTORATION PLAN

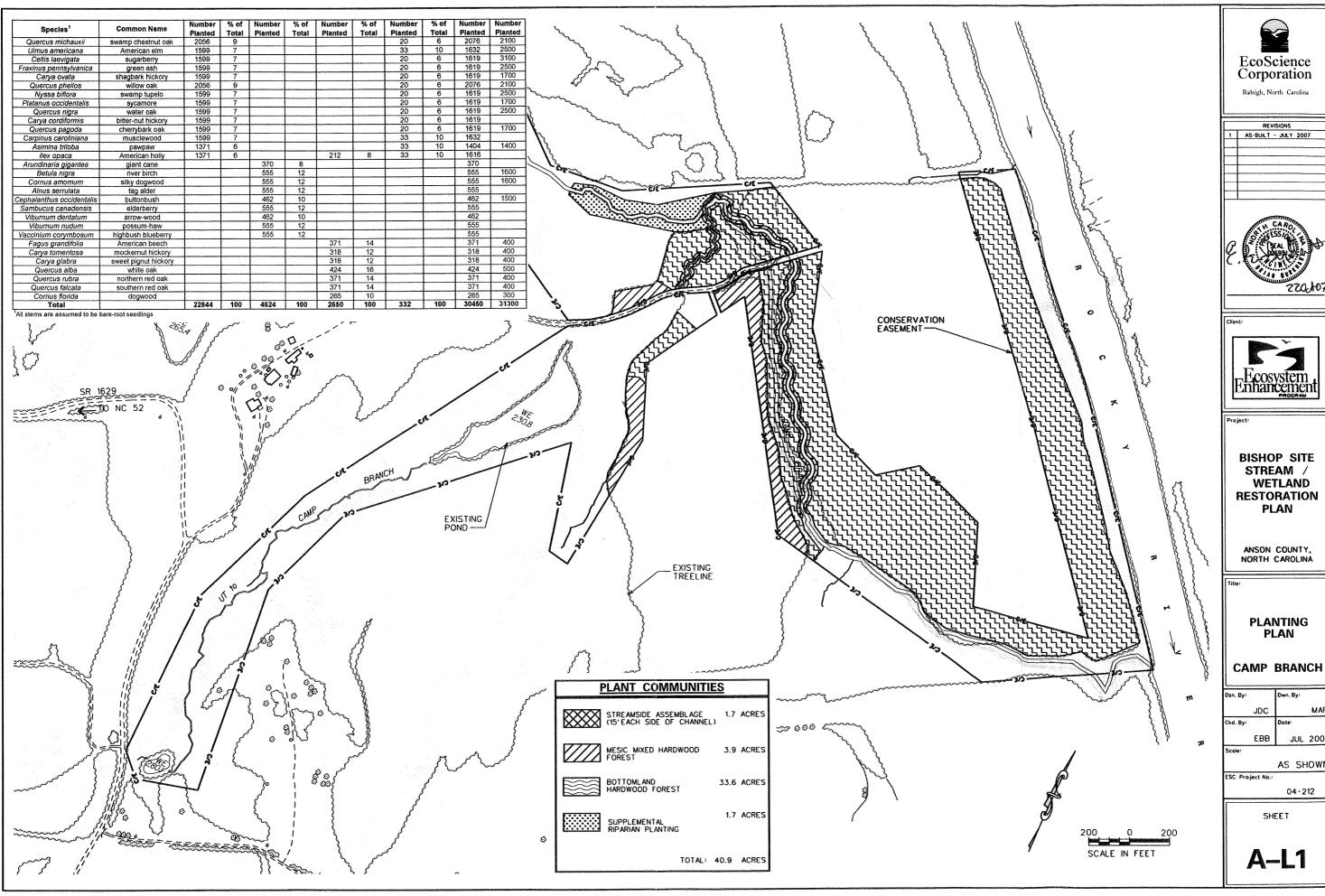
ANSON COUNTY, NORTH CAROLINA

Title:

EROSION CONTROL DETAILS

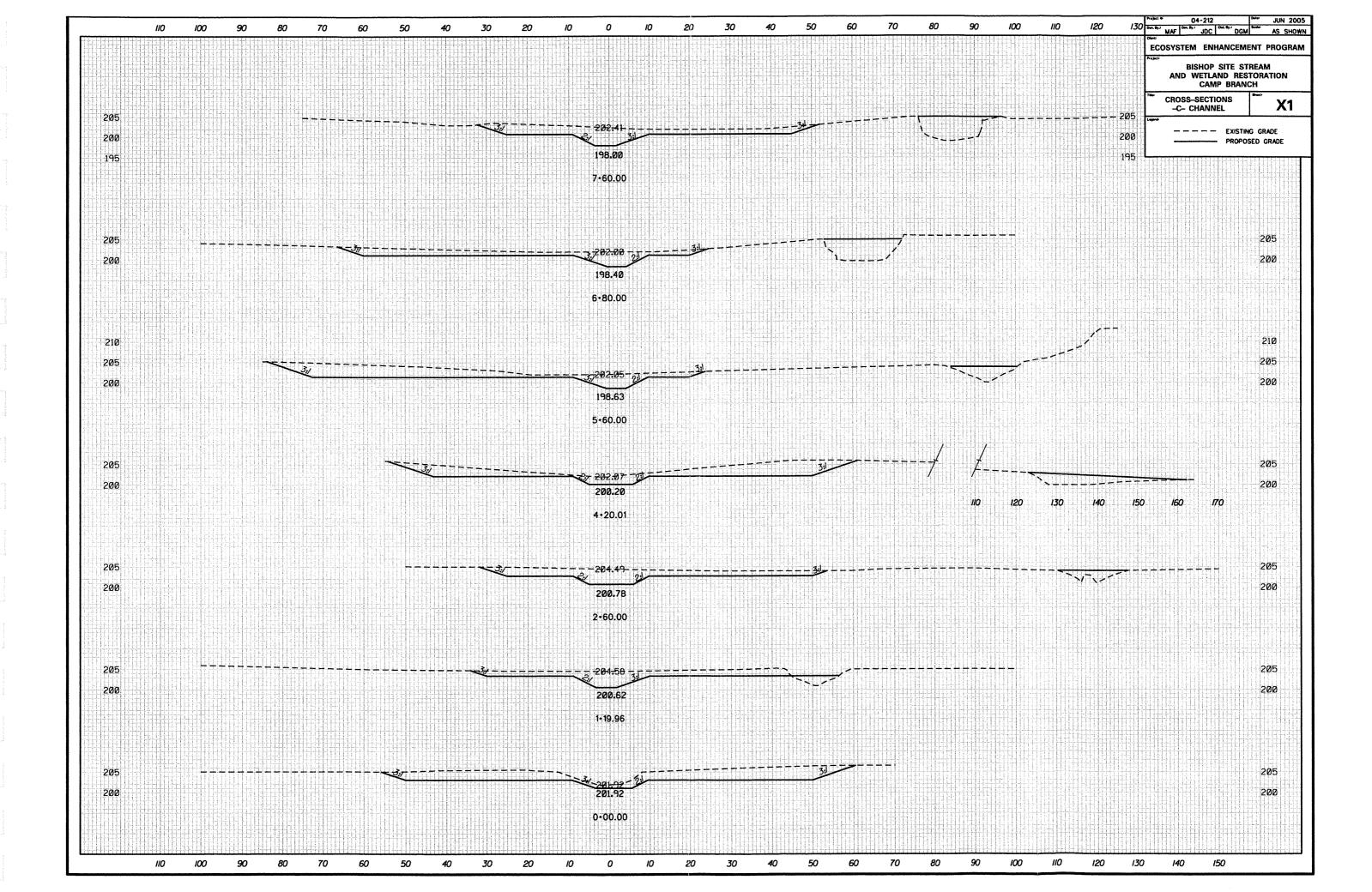
CAMP BRANCH

Dan. By:		Dwn. By:		
	JDC		MAF	
Ckd. By:		Dote:		
	DGM	JUN	2005	

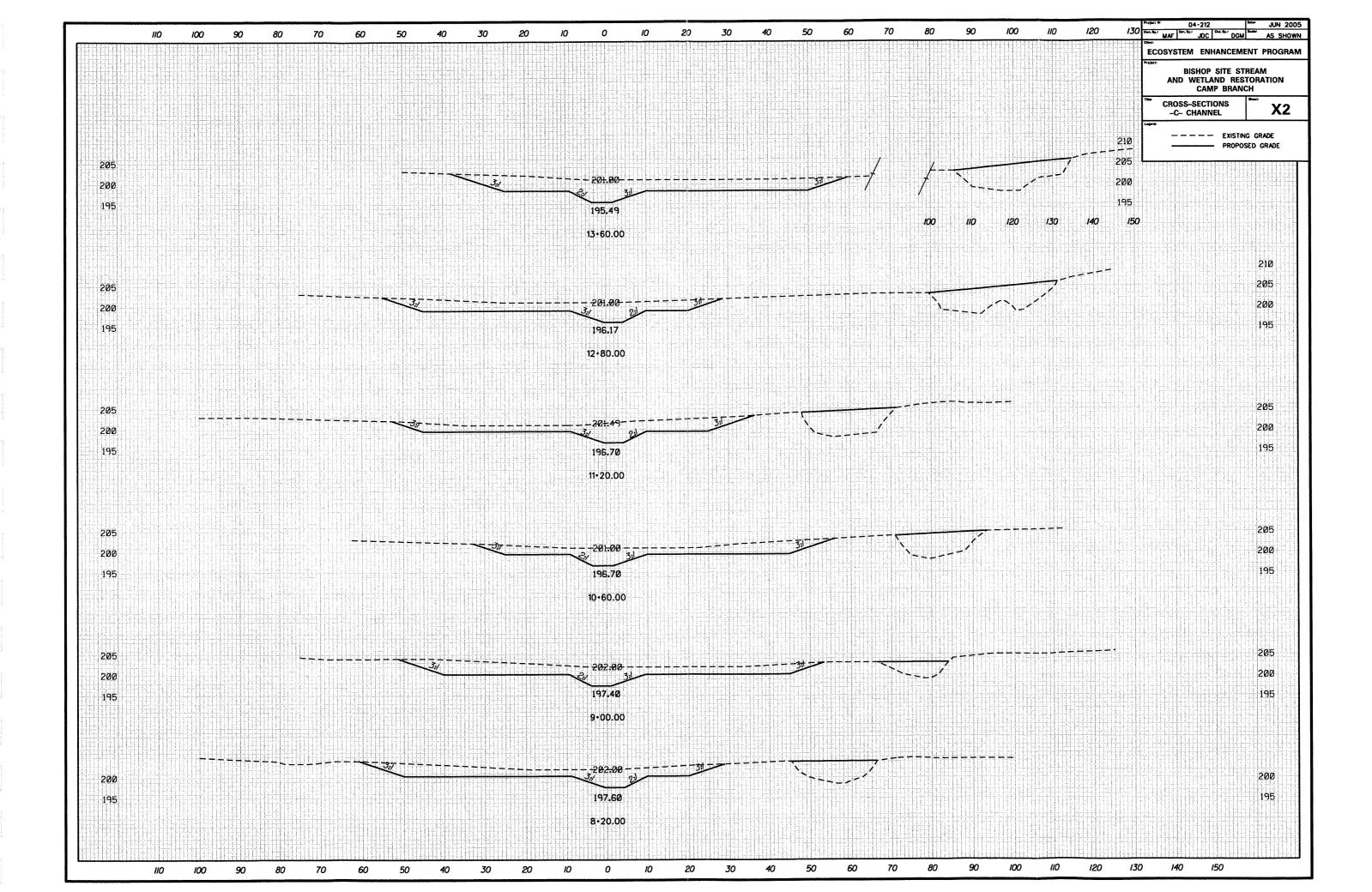

Scole:

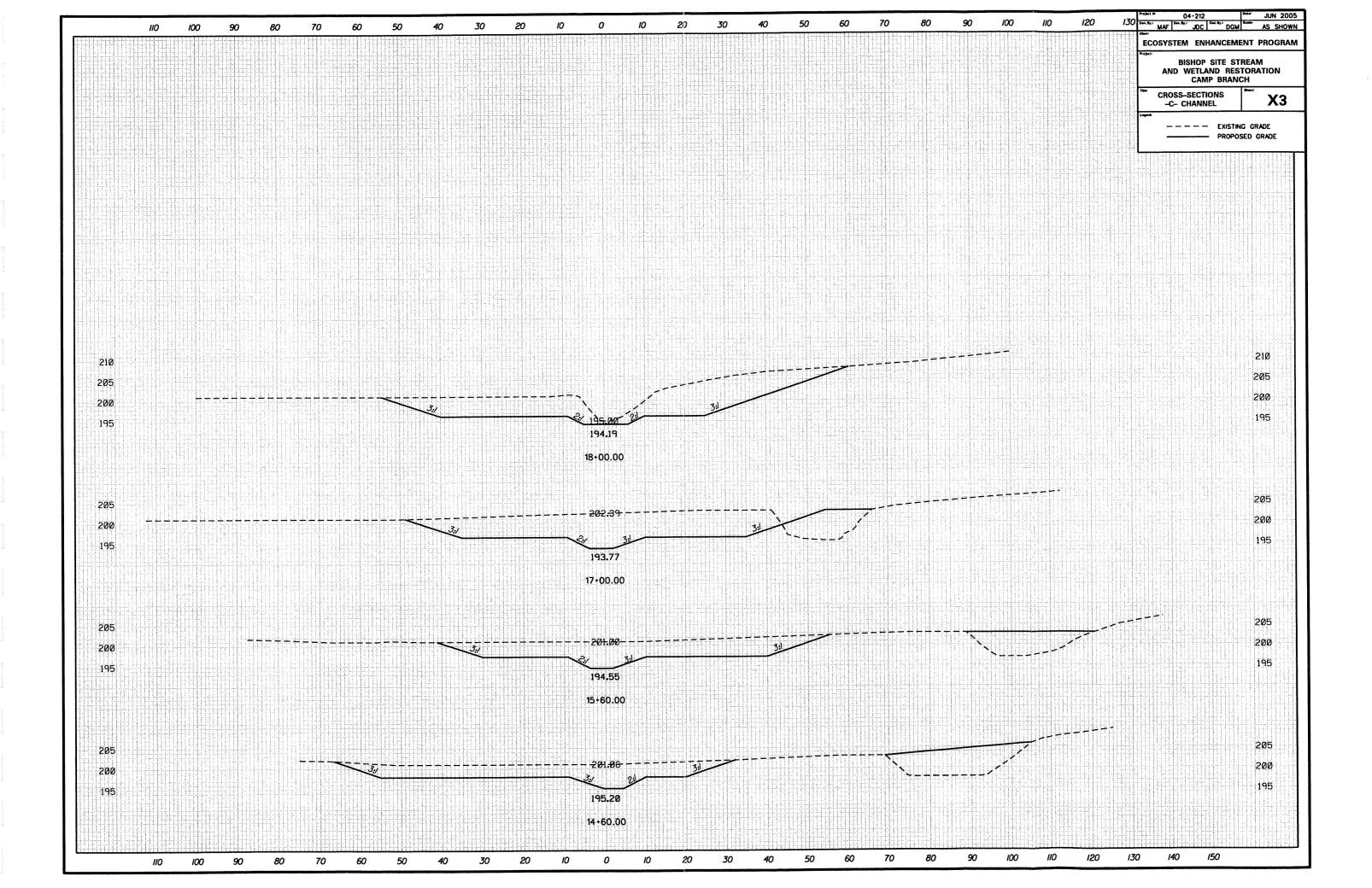
NO SCALE

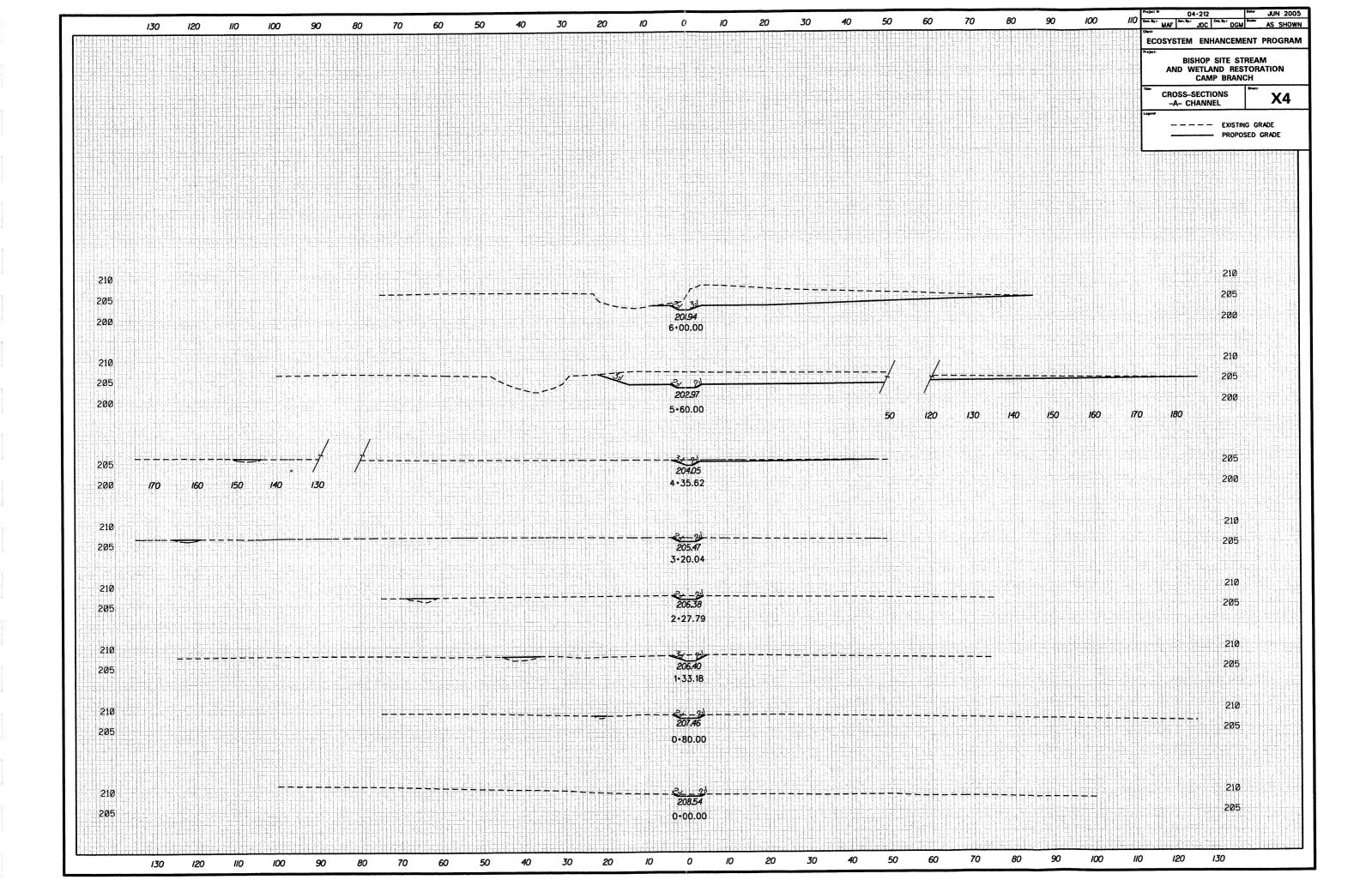
04-212

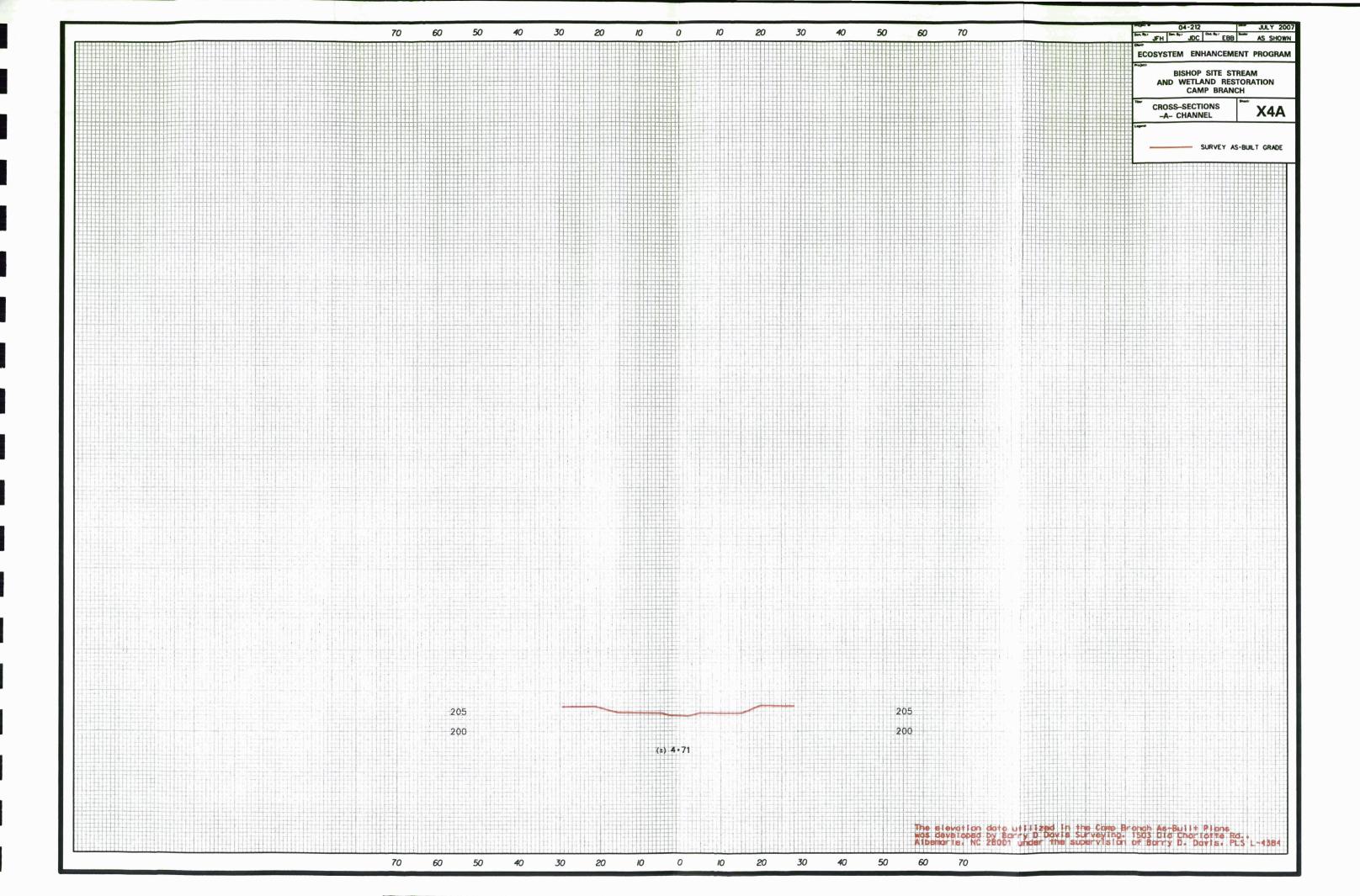

SHEET

A-EC2






	Osn. By:		Dwn. By:			
		JDC	MAF			
Ī	Ckd. By:		Dote:			
		EBB	JUL 2007			
	Scole:					
			AS SHOWN			

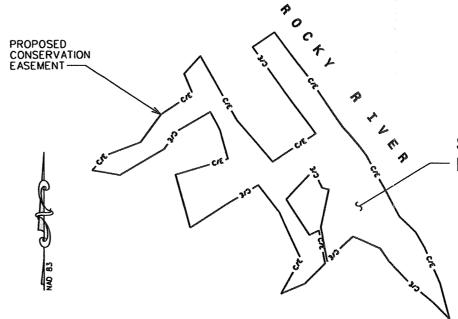


CONSTRUCTION SEQUENCE

- 1. MOBILIZE EQUIPMENT AND MATERIALS TO DULA SITE.
- 2. ESTABLISH ACCESS ROADS AND STAGING AREAS AS DEPICTED ON THE PLANS OR AS DIRECTED BY THE PROJECT MANAGER AND MARK CONSTRUCTION EQUIPMENT ACCESS LOCATIONS WITH VISIBLE MARKERS. CONSTRUCTION EQUIPMENT SHALL BE MAINTAINED AND SERVICED WITHIN THE LIMITS OF THE ESTABLISHED STAGING AREAS. THE CONTRACTOR SHALL BE RESPONSIBLE FOR MAINTAINING ALL STAGING AREAS IN AN ENVIRONMENTALLY SENSITIVE MANNER.
- 3. INSTALL IMPROVEMENTS TO SITE ACCESS ROAD IF REQUIRED AND INSTALL TEMPORARY EROSION CONTROL MEASURES (I.E., SILT FENCE, STONE OUTLETS, ETC.) AS REQUIRED.
- 4. AT THE END OF EACH DAY OF CONSTRUCTION, THE CONTRACTOR SHALL PROVIDE TEMPORARY SEED AND MULCH AND APPLY COIR FIBER MATTING, AS APPROPRIATE, TO ALL DISTURBED AREAS. IN ADDITION, THE CONTRACTOR SHALL BE RESPONSIBLE FOR MAINTAINING ALL TEMPORARY EROSION CONTROL MEASURES ON A DAILY BASIS THROUGHOUT THE CONSTRUCTION PERIOD.
- 5. INSTALL PUMP-AROUND OPERATION JUST BELOW THE CONFLUENCE OF THE WEST PORTION OF DULA THOROUGHFARE (-D-) WITH THE EASTERN PORTION (-T-). ALL WORK BELOW THIS POINT SHALL BE CONSTRUCTED IN THE "DRY". THIS INCLUDES THE FLOODPLAIN GRADING, THE DEVELOPMENT OF THE VERNAL POOLS AND THE EXCAVATION OF THE PROPOSED CHANNEL. THE CONTRACTOR SHALL INITIATE THE PUMP-AROUND OPERATION ON A SCHEDULE THAT EFFICIENTLY PROSECUTES PROJECT WORK.
- 6. THE CONTRACTOR SHALL COMPACT THE PROPOSED FILL IN THE FILLED CHANNELS TO 90 PERCENT PROCTOR. THE PROPOSED CHANNEL BLOCKS SHALL HAVE A CORE OF IMPERVIOUS SELECT MATERIAL AS SPECIFIED IN THE PROJECT DETAIL AND SPECIAL PROVISIONS. THE VERNAL POOL AT APPROXIMATE STATION 19+00 SHALL BE "NOTCHED" TO DIRECT OVERFLOW TOWARD THE NEW CHANNEL
- 7. INSTALL PUMP-AROUND OPERATIONS ABOVE STATION 0.00 ON THE WESTERN PORTION OF DULA THOROUGHFARE (-D-) AND ABOVE STATION 0.00 AT CULVERT AT THE BEGINNING OF THE EASTERN SECTION (-T-). THESE PUMP-AROUNDS MAY DIRECT PROPERLY TREATED WATER TO THE NEWLY CREATED STABILIZED CHANNEL AND THE PROPOSED WORK SHALL BE CONSTRUCTED IN THE "DRY".
- 8. THE CONTRACTOR SHALL PLACE BORROW MATERIAL IN AREAS DESIGNATED ON THE PLANS AND AT THE DIRECTION OF THE PROJECT MANAGER. STOCKPILE AREAS SHALL BE PROTECTED BY SILT FENCING AS APPROPRIATE.
- 9. ONCE CONSTRUCTION IS COMPLETE THE CONTRACTOR SHALL REMOVE ALL CONSTRUCTION MATERIALS FROM THE CONSERVATION EASEMENT, DISPOSE OF THEM IN AN APPROVED DUMP SITE, AND SCARIFY ANY COMPACTED AREAS AS DIRECTED BY THE PROJECT MANAGER. TO COMPLETE PERMANENT SEEDING AND MULCHING, ALL DISTURBED AREAS SHALL BE DISKED OR PLOWED TO CREATE MICRO TOPOGRAPHY TO THE SATISFACTION OF THE PROJECT MANAGER AND PERMANENTLY SEEDED AND MULCHED. STONE APPLIED TO ACCESS ROAD, IF ANY, SHALL REMAIN OR BE REMOVED AS INDICATED ON PLAN SHEET 2.

INDEX OF SHEETS

DULA THOROUGHFARE


- **B: CONSTRUCTION SEQUENCE**
- B-1: RADIUS TABLE / SHEAR STRESS TABLE
- **B-2: TYPICAL SECTIONS / GENERAL DETAILS**
- B-2A, B-2B: GENERAL DETAILS
 - B-2C: NEW CHANNEL CENTERLINE DATA
 - B-3: SUMMARY OF QUANTITIES /SUMMARY OF EARTHWORK
 - **B-4: EXISTING CONDITIONS**
 - B-5: NEW CHANNEL LAYOUT
 - B-6: SITE PLAN
 - B-7: PROFILE DULA THOROUGHFARE -T- CHANNEL
 - B-7A: AS-BUILT PROFILE DULA THOROUGHFARE -T- CHANNEL
 - B-8: PROFILE DULA THOROUGHFARE -D- CHANNEL
 - B-8A: AS BUILT PROFILE DULA THOROUGHFARE -D- CHANNEL
 - **B-EC1: EROSION CONTROL PLAN**
 - **B-EC2: EROSION CONTROL DETAILS**
 - **B-L1: PLANTING PLAN** X5-X7: CROSS-SECTIONS
- X5A-X7A: AS-BUILT CROSS-SECTIONS

SITE B **DULA** THOROUGHFARE

TYPE OF WORK:

STREAM AND WETLAND RESTORATION / ENHANCEMENT

• STREAM RESTORATION / ENHANCEMENT • WETLAND RESTORATION / ENHANCEMENT • NEW CHANNEL CONSTRUCTION • SITE PLANTING

SITE B **DULA THOROUGHFARE**

Prepared in the office of:

EcoScience Corporation 1101 Haynes St., Suite 101 Raleigh, North Carolina 27604

DAVID G. MODLIN

PROJECT MANAGER: JAMES D. COOPER

SEAL:

ECOSYSTEM ENHANCEMENT PROGRAM Raleigh, North Carolina

Prepared for:

Revisions Date 09/29/05 REV'D SHEETS B-2B, B-3 JDG 2 AS-BUILT JUL 2007

JDG JDC JUL 2007 ESC Project No: 04-212 SHEET

CURVE RADIUS TABLE

CURVE ID	NORTHING	EASTING	RADIUS OF CURVATURE (FT.)
D1	511701,2133	1674842.6507	30.00
D2	511723.9248	1674898.4724	30.00
D3	511776.8248	1674882,3079	25.00
D4	511792.4309	1674935.0515	30.00
D5	511837.8210	1674960.9682	20.00
D6	511862.4778	1675005.2406	30.00
D7	511907.9580	1675063.9353	35.00
D8	511902.4409	16751 30.2828	25.00
D9	51 1 953.21 49	1675156.0843	30.00
D10	511941.9471	1675225.8063	40.00
D11	51 2008.4578	1675254.0567	25.00
D12	511983.7727	1675310.2663	35.00
T1	51 231 8.5653	1675164.6548	40.00
T2	51 2291 .7653	1675219.4537	20.00
T3	51 2253.6505	1675207.3186	20.00
T4	51 2239.8899	1675255.6814	30.00
T5	51 21 80.7288	1675244.6142	30.00
T6	51 21 63.5826	1675355.0795	80.00
T7	51 2058,4660	1675320.6382	29.00
T8	51 201 7.2264	1675381.2954	40.00
T9	511947.8574	1675392.2492	30.00
T10	511931.0049	1675457.8222	30.00
T11	511856.3837	1675428.4163	50.00
T12	511840.8237	1675512,0724	35.00
T13	511757.5694	1675556.0557	50.00
T14	511658.3154	1675614.2386	45.00
T15	511564.1474	1675601.0327	50.00
T16	511568.5737	1675711.0115	60.00
T17	511510.7953	1675656,3041	19.57
T18	51 1 485.2761	1675710.1305	40.00
T19	511419.5770	1675664.4838	40.00
T20	511395.5051	1675730,7029	30.00
T21	511426.5711	1675742.1843	60.00
T22	511349.2322	1675788,7683	30.00
T23	511357.8615	1675795.0251	20.00
T24	511362.8636	1675854,9586	40.00
T25	511273.2071	1675837,2276	50.00
T26	511257.0528	1675926,1340	40.00
T27	511163.0873	1675940,9706	50.00
T28	511154.1092	1676010,4440	20.00
T29	511100.3818	1676003.0692	30.00
T30	511095.4024	1676057,8437	25.00
T31	511011.9360	1676041,7702	60.00
T32	51 0947.21 53	1676145.2711	60.00

CURVE ID D1-D12 = DULA THOROUGHFARE -D- CHANNEL CURVE ID T1-T32 = DULA THOROUGHFARE -T- CHANNEL

FLOODPLAIN ELEVATION TABLE -T- CHANNEL

	Proposed
	Floodplain
Station	Elevation
0+00	202.2
1+50	202.0
2+75	201.9
3+60	201.8
4+50	201.8
5+75	201.6
6+90	201.5
8+25	201.3
9+75	201.1
11+25	201.0
12+00	200.9
13+00	200.9
15+00	200.7
16+75	200.4
18+15	200.2
20+00	200.0
20+56	200.0

FLOODPLAIN ELEVATION TABLE -D- CHANNEL

	Proposed
	Floodplain
Station	Elevation
0+00	206.1
1+10	205.4
2+25	204.7
3+90	203.8
5+10	203.0
6+30	202.4
7+34	201.8

SHEAR STRESS TABLE

	Flows	in CFS		
Dula Thoroughfare		Upper	Lower	
				,
1-Yr. Event		20	22	
2-Yr. Event		31	34	
10-Yr. Event		82	90	
Sh	ear Stress	in LB/SQ.	FT.	
	Ctation	I at OD	Channel	Diaht Of
Proposed	Station	Left OB	Channel	Right OF
Upper Dula (WEST)				
1-Yr, Event	0+00	0.13	0.32	0.11
2-Yr. Event	0+00	0.16	0.37	0.14
10-Yr. Event	0+00	0.23	0.48	0.20
1-Yr. Event	7+00	0.03	0.08	0.03
2-Yr. Event	7+00	0.08	0.21	0.07
10-Yr. Event	7+00	0.21	0.42	0.21
Lower Dula (EAST)				
1-Yr. Event	7+00	0.02	0.07	0.02
2-Yr. Event	7+00	0.04	0.09	0.03
	7+00	0.10	0.17	0.08

REVISIONS

Client:

Project:

BISHOP SITE STREAM / WETLAND RESTORATION PLAN

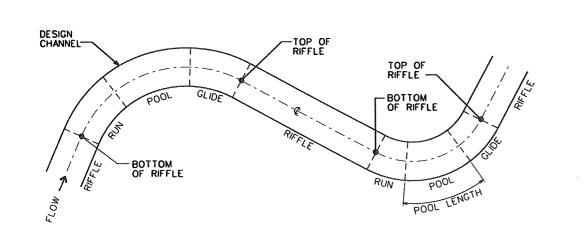
ANSON COUNTY, NORTH CAROLINA

Title

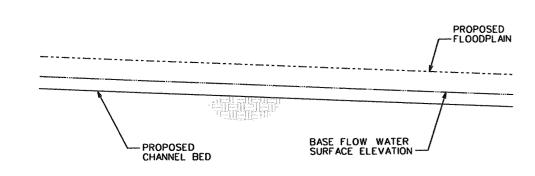
RADIUS TABLE / SHEAR STRESS TABLE

DULA THOROUGHFARE

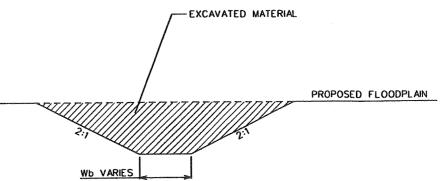
Dsn. By:		Dwn. By:		
	JDC		M	
Ckd. By:		Dote:		
	DGM	JUN	200	
Scale:				
	1	O SCA	_E	
			_	

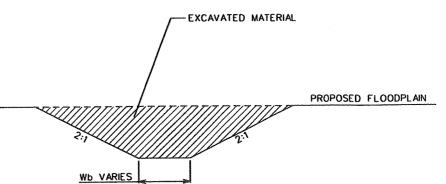

04-212

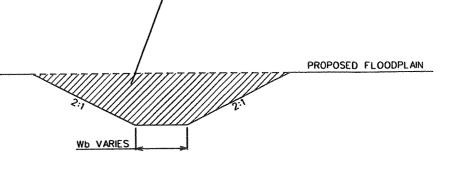
SHEET


R_1

NOTE:


MORPHOLOGICAL TABLE AND RIFFLE TABLE NOT APPLICABLE TO PROPOSED DULA THOROUGHFARE RESTORATION/ENHANCEMENT.


TYPICAL CHANNEL PLAN VIEW



TYPICAL CHANNEL PROFILE

TYPICAL VERNAL POOL

Wokf VARIES - PROPOSED FLOODPLAIN -LIMIT OF FLOODPLAIN GRADING COIR FIBER ... MATTING ... NATURAL FLOODPLAIN Wbot

TYPICAL CROSS-SECTION

NOTE: USE 6.5-FOOT COIR FIBER EACH SIDE.

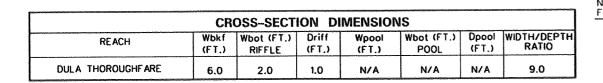
	REVISIONS					
Ī						
Ī						

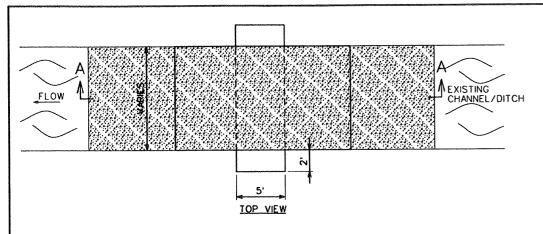
BISHOP SITE STREAM / WETLAND RESTORATION PLAN

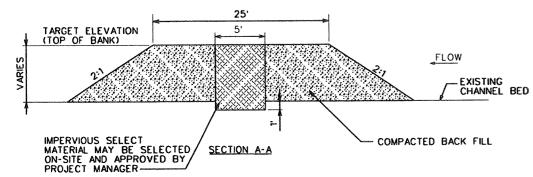
ANSON COUNTY, NORTH CAROLINA

TYPICAL SECTIONS / GENERAL DETAILS

DULA THOROUGHFARE

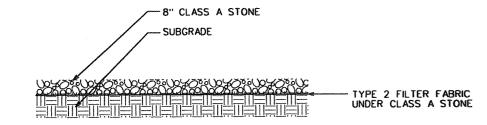

Osn. By:		Dwn. By:		
	JDC	MAF		
Ckd. By:		Dote:		
	DGM	JUN 2005		
Conto:				


NO SCALE


04-212

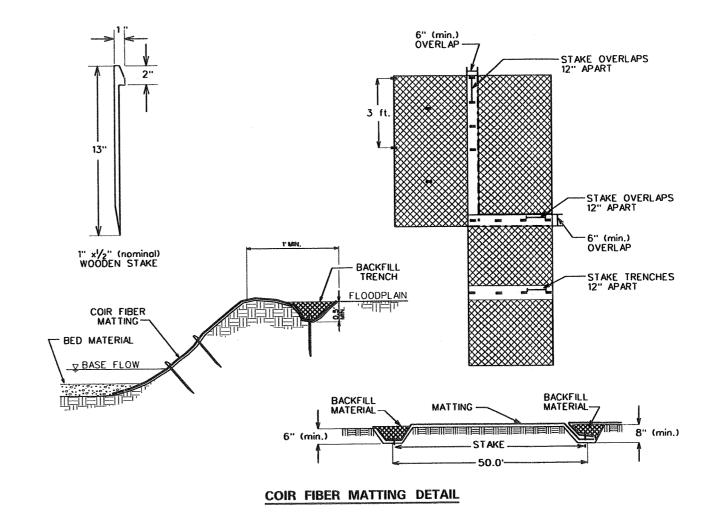
SHEET

B-2



DULA THOROUGHFARE

NOTE:


- CHANNEL PLUG WILL BE INITIALLY FILLED WITH AVAILABLE WASTE AND COMPACTED TO NINETY-FIVE PERCENT STANDARD PROCTOR.
- 2. THEN A CENTRAL PORTION 5 FEET LONG WILL BE REMOVED AND REPLACED WITH IMPERVIOUS SELECT MATERIAL.
- 3. THE IMPERVIOUS SELECT MATERIAL WILL BE KEYED INTO THE ORIGINAL BANK A MINIMUM OF 2 FEET AND INTO THE ORIGINAL BED A MINIMUM OF 1 FEET.

NOTES:

1. THIS IS THE MINIMUM ACCEPTABLE SECTION.

ACCESS ROAD SECTION DETAIL SUGGESTED OR EQUIVALENT

REVISIONS

Ecosystem Enhancement

Project:

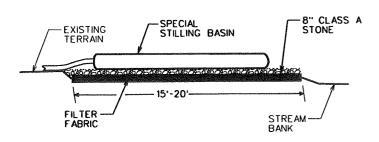
BISHOP SITE STREAM / WETLAND RESTORATION PLAN

ANSON COUNTY, NORTH CAROLINA

Title:

GENERAL DETAILS

DULA THOROUGHFARE


cole:

NO SCALE ESC Project No.:

04-212

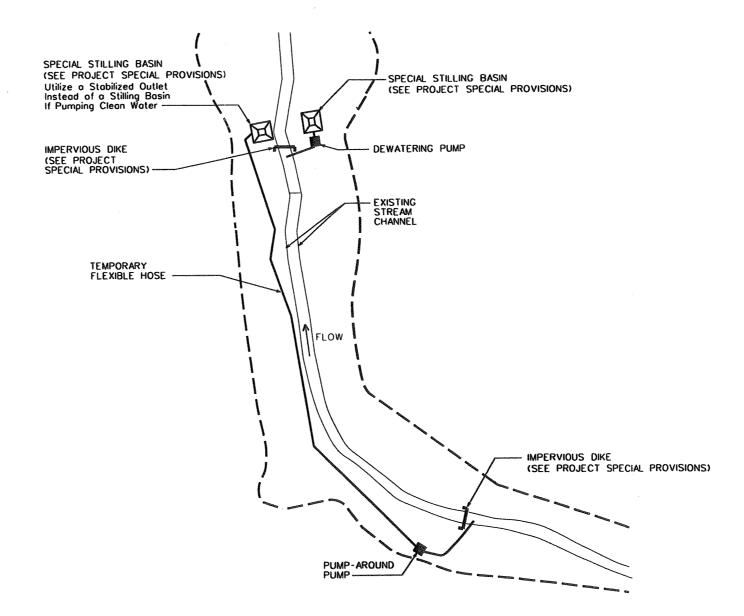
SHEET

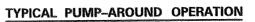
B-2A

A

NOTE

1. WHEN PUMPING CLEAN WATER, THE CONTRACTOR MAY PROVIDE A STABILIZED OUTLET BY OMITTING THE SPECIAL STILLING BASIN AND PROVIDING THE ROCK PAD AS SHOWN WITH MINIMUM DIMENSIONS 10 FEET WIDE BY 15 FEET LONG.


SPECIAL STILLING BASIN WITH ROCK PAD


NOTES:

- ALL EXCAVATION SHALL BE PERFORMED IN ONLY DRY OR ISOLATED SECTIONS OF CHANNEL.
- IMPERVIOUS DIKES ARE TO BE USED TO ISOLATE WORK FROM STREAM FLOW WHEN NECESSARY.
- 3. ALL GRADED AREAS SHALL BE STABILIZED WITHIN 24 HOURS.
- MAINTENANCE OF STREAM FLOW OPERATIONS SHALL BE INCIDENTAL TO THE WORK. THIS INCLUDES POLYETHYLENE SHEETING, DIVERSION PIPES, PUMPS AND HOSES.
- 5. PUMPS AND HOSES SHALL BE OF SUFFICICIENT SIZE TO DEWATER THE WORK AREA.

SEQUENCE OF CONSTRUCTION FOR TYPICAL WORK AREA

- 1. INSTALL SPECIAL STILLING BASIN(S).
- 2. INSTALL UPSTREAM PUMP AND TEMPORARY FLEXIBLE HOSE.
- 3. PLACE UPSTREAM IMPERVIOUS DIKE AND BEGIN PUMPING OPERATIONS FOR STREAM DIVERSION.
- 4. PLACE DOWNSTREAM IMPERVIOUS DIKE AND PUMPING APPARATUS. DEWATER ENTRAPPED AREA. AREA TO BE DEWATERED SHALL BE EQUAL TO ONE DAY'S WORK.
- 5. PERFORM STREAM RESTORATION WORK IN ACCORDANCE WITH THE PLANS.
- 6. EXCAVATE ANY ACCUMULATED SILT AND DEWATER BEFORE REMOVAL OF IMPERVIOUS DIKES, REMOVE IMPERVIOUS DIKES, PUMPS, AND TEMPORARY FLEXIBLE HOSE. (DOWNSTREAM IMPERVIOUS DIKES FIRST).
- 7. ALL GRADING AND STABILIZATION MUST BE COMPLETED AT THE END OF EACHDAY WITHIN THE PUMP AROUND AREAS BETWEEN THE IMPERVIOUS DIKES. THE IMPERVIOUS DIKE LOCATIONS AS SHOWN ON THIS SHEET ONLY SHOW THE UPPER AND LOWER EXTENT OF WORK FOR EACH STREAM SEGMENT. THE CONTRACTOR IS RESPONSIBLE FOR DETERMINING THE LOCATION OF THE IMPERVIOUS DIKE(S) FOR EACH DAY'S WORK.
- REMOVE SPECIAL STILLING BASIN(S) AND BACKFILL. STABILIZE DISTURBED AREA WITH SEED AND MULCH.

Raleigh, North Carolina

REVISIONS

LAND QUALITY

COMMENTS

Client:

Project:

BISHOP SITE STREAM / WETLAND RESTORATION PLAN

> ANSON COUNTY, NORTH CAROLINA

Title:

GENERAL DETAILS

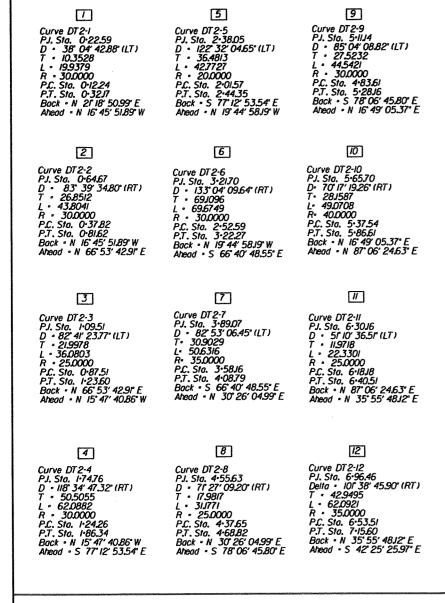
DULA THOROUGHFARE

JDC MAF

Ckd. By: Dote:

DGM JUN 2005

NO SCALE


ESC Project No.:

04-212

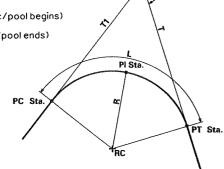
SHEET

B-2B

-D- CHANNEL CURVE DATA

PISta.= center of pool

D- deflection angle (A) between tangent lines T2 and T measured along direction of travel


L= arc/poollength

T/T1= tangent length

R= radius of curvature

PC Sta. point of curvature (where arc/pool begins)

PT Sta. point of terminus (where arc/poolends)

NOTE: FOR NEW CHANNEL LAYOUT, SEE SHEET B-5.

-T- CHANNEL CURVE DATA

				programs		(TEC)
	6	II	[6]	2/	26	Curve DTT-3/
Curve DTT-I PJ. Sta. 0:45.66	Curve DTT-6 PJ. Sta. 2:91,60	Curve DTT-II PJ. Sta. 6:36.37	Curve DTT-16 PJ. Sta. II-15.44	Curve DTT-21 PJ. Sta. 13:55.35	Curve DTT-26 PJ. Sta. 15:93.85	P.J. Sta. 19-10.78 D - 100 33' 01.80' (RT)
D = 49'04' 31.92" (RT) T = 18.2609	D • 60° 37′ 01.59° (LT) T • 46.7642	D • 72°16′17.94°(RT) T • 36.5085	D • 42 28 210 (LT) T • 23,3162	D • 21 43' 25,17*(LT) T • 11,5127 L • 22,7490	D • 85 14' 2084" (LT) T • 36.8071	T • 72.2069 L • 105.2962
L • 34.2612 R • 40.0000	L • 84.6375 R • 80.0000	L • 63,0689 R • 50,0000	L • 44,4771 R • 60,0000	R • 60,0000	L • 59.5081 R • 40.0000	R • 60,0000 P.C. Sta. 18•38.58
P.C. Sta. 0-27.40 P.T. Sta. 0-61.66	P.C. Sto. 2.44.84 P.T. Sto. 3.29.47	P.C. Sta. 5.99.86 P.T. Sta. 6.62.93	P.C. Sta. 10:92.13 P.T. Sta. 11:36.60 Back • S & 18' 59.26" E	P.C. Sta. 13:43.84 P.T. Sta. 13:66.59 Back • N 85:12: 54.94 E	P.C. Sta. 15.57.04 P.T. Sta. 16.16.55 Back • S 5.10' 04.61' W	P.T. Sta. 19:43.87 Back • S 79:05' 59.21' E
Back * S 33" 24" 34.00" E Ahead * S 15" 39" 57.91" W	Bock • S 7 26' 18.77" E Ahead • S 62' 03' 20.36" E	Back • S 64° 22′ 58.49° E Ahead • S 7° 53′ 19.45° W	Ahead • S 46 47' 20.35' E	Ahead • N 63 29 29.78 E	Ahead • 5 80 04 16.23 E	Ahead * S 21' 27' 02.59' W
-	EST)	رما	[7]	[22]	27	32
2 Curve DTT-2	7]	[12] Curve DTT-12	Curve DTT-17	Curve DTT-22	Curve DTT-27	Curve DTT-32
PJ. Sta. 0.91.98 D • 88"00" 20.03" (LT)	Curve DTT-7 PJ. Sta. 3-71J4	P.J. Sta. 7+08,77 D • 100° 15′ 21,66° (LT)	PJ. Sta. II·50.79 D • 7f 5f 14.23 (RT)	P.J. Sta. 13-85.33 D • 42 12 04.94 (RT)	PJ. Sta. 16:93.38 D • 85°14' 49.42" (RT)	P.J. Sta. 19:90.87 D • 44 36' 15.40' (LT)
T • 19.3157 L • 30.7197	D • 76' 26' 18.83' (RT) T • 22.8366	T = 41,9011 L • 61,2429	T - 14,1811 L - 24,5438	T • 11.5764 L • 22.0966	T • 46.0153 L • 74.3921	T • 24,6104 L • 46,7095
R • 20.0000 P.C. Sta. 0.72.66	L = 38,6890 R = 29,0000 P.C. Sta. 3:48,31	R = 35,0000 P.C. Sta. 6.66,86	R • 19.5710 P.C. Sta. 11•36.60	R = 30.0000 P.C. Sta. 13:73.75	R • 50,0000 P.C. Sta. 16:47.36	R • 60,0000 P.C. Sta. 19•66.26
P.T. Sta. 1:03.38 Back • S 15' 39' 57.91' W	P.T. Sta. 3-87.00 Back • S 62'03' 20.36' E	P.T. Sta. 7*28JI Back * S 7*53' 19.45*W	P.T. Sta. II-6IJ5 Back • S 45' 52' 25J9' E	P.T. Sta. 13:95.85 Back • N 63 29 2978 E	P.T. Sta. 17*2176 Back • S 80 04' 16.23" E	P.T. Sta. 20·12.97 Back • S 2l' 27' 02.59' W
Ahead • S 72 20 22JF E	Ahead • S 14 22 58.47° W	Ahead • N 87° 37′ 57.78° E	Ahead • S 25 58 49.04 W	Ahead • S 74° 18° 25.29° E	Ahead • \$ 5 10 33J9 W	Ahead • S 23° 09' 12.80° E
[3]	8	[73]	[18]	23	28	
Curve DTT-3	Curve DTT-8	Curve DTT-I3	Curve DTT-18	Curve DTT-23	Curve DTT-28	
PJ. Sta. 1·20.81 D • 82°08° 49.25°(RT)	PJ. Sta. 4:67.68 D = 108:44:00.32:(LT)	P.J. Sta. 8·51.26 D • 117° 39° 01.51° (RT)	P.J. Sta. 11:94.88 D - 80'16' 26.64' (LT)	P.J. Sta. 14·12.43 D • 65·35′56.51° (RT)	P.J. Sta. 17•37.07 D • 64°34′38.58°(LT) T• 12.6380	
T • 17.4308 L • 28.6747	T• 55.8029 L• 75.9102	T = 82.6419 L = 102.6694	T · 33.7273 L · 56.0419	T = 12,8889 L = 22,8984	L* 22.5418 R* 20.0000	
R • 20,0000 P.C. Sta. 1•03.38	R+ 40,0000 P.C. Sta. 4+11,88	R • 50,0000 P.C. Sta. 7•68.61	R• 40,0000 P.C. Sta. II•6IJ5 P.T. Sta. I2•17J9	R • 20,0000 P.C. Sta. 13.99.54	P.C. Sta. 17.24.43 P.T. Sta. 17.46.97	
P.T. Sta. 1·32.06 Back • S 72°20°22.Jf E	P.T. Sto. 4.87.79 Back • S 14 22 58.47 W	P.T. Sta. 8-7128 Back • N 87" 37" 57.78" E	Back • S 25.03' 53.87' W	P.T. Sta. 14:22.44 Back • S 74'18' 25.29' E Ahead • S 8' 42' 28.78' E	Back • S 5 10 33.19 W Ahead • S 59 24 05.39 E	
Ahead • S 9 48 27 13 W	Ahead • N 85 38 58J6 E	Ahead • S 25' 16' 59.29' W	ALEOU - 5 35 12 3210 E	A1800 - 3 6 42 2010 E		
			([62]	[60]	
4	9	[4]	<u>19</u>	24 Cupp 077-24	29 Curve DTT-29	
Curve DTT-4 PJ. Sta. I-6472	Curve DTT-9 PJ. Sta. 5-19J4	Curve DTT-14 PJ. Sta. 9-94.63	Curve DTT-19 PJ. Sta. 12:44.5	Curve DTT-24 PJ. Sta. 14:49.70 D = 60°05′19.50°(LT)	Curve Di 1-29 PJ. Sta. 17-86.87 D • 64' 24' 15JO' (RT)	
D • 84 41 1974 (LT) T • 27.3404	D • 8f 09' 53,09' (RT) T • 25,6971	D • 104' 48' 54.61' (LT) T • 58.4497	D • 68° 38° 43.06° (RT) T • 27.3093 L • 47.9234	T • 23,1353 L • 41,9499	T · 18.8935 L · 33.7220	
L 44.3430 R 30.0000	L • 42.4978 R • 30.0000	L = 82.3216 R = 45.0000 P.C. Sta. 9-36.18	R • 40,000 P.C. Sta. 12•17.19	R = 40,0000 P.C. Sta. 14.26.57	R • 30.0000 P.C. Sta. 17•67.97	
P.C. Sta. 1·37.38 P.T. Sta. 1·81.72	P.C. Sta. 4:93,45 P.T. Sta. 5:35,94 Back • N 85" 38" 58,16" E	P.T. Sta. 10:18:50 Back • S 25:16' 59:29' \(\)	P.T. Sta. 12:65.11 Back • S 55 12' 32.76' E	P.T. Sta. 14:68.52	P.T. Sta. 18:01.69 Back • S 59 24' 05.39" E	
Bock • S 9' 48' 27.13" W Ahead • S 74' 52' 52.61" E		Ahead • S 79 31 55.31 E	Ahead • S 13° 26' 10.29' W	Ahead • S 68" 47" 48.27" E		
Œ	[10]	[75]	20	25]	30	
5	101					
Curve DTT-5 PJ. Sta. 2:08.85	Curve DTT-IO PJ. Sta. 5:8I.68	Curve DTT-15 PJ. Sta. 10-61J4	Curve DTT-20 PJ. Sta. 13:14.60	Curve DTT-25 PJ. Sta. 15-22.07	Curve DTT-30 PJ. Sta. 18-24.43	
D • 73° 26′ 33.84° (RT) T • 22.3787	D • 51 Il' 49.74" (LT) T • 14.3727	D • 75° 12° 56.06° (RT) T • 38.5160	D = 108°13′15.35°(LT) T = 41.4593	D • 73° 57° 52.89° (RT) T • 37.6536	D = 84°06′ 08.92° (LT) T = 22.5506	
L = 38.4545 R = 30.0000	L = 26.8068 R = 30.0000	L • 65.6380 R • 50.0000	L • 56.6643 R • 30.0000	L • 64.5464 R • 50.0000	L • 36.6966 R • 25.0000	
P.C. Sta. 1.86.47 P.T. Sta. 2.24.92	P.C. Sta. 5:67.31 P.T. Sta. 5:94J2	P.C. Sta. 10:22.63 P.T. Sta. 10:88.26	P.C. Sta. 12-73.14 P.T. Sta. 13-29.80	P.C. Sta. 14·84.41 P.T. Sta. 15·48.96 Back • S 68° 47' 48.27° E	P.C. Sta. 18:01.88 P.T. Sta. 18:38.58 Back • S 5:00:09.7 F W	
Bock • S 74°52′52.61° E Ahead • S 1°26′1877° E	Back • S 13" II" 08,75" E Ahead • S 64" 22" 58,49" E	Back • S 79° 31° 55.31° E E Ahead • S 4° 18′ 59.26° E	Back • S 13° 26' 10.29' W Ahead • N 85° 12' 54.94° E		Ahead • S 79 05' 59.2" E	

REVISIONS

REPLACED -T- CHANNEL
CURVE DATA 05-18-06 JDG

Client:

Project:

BISHOP SITE STREAM / WETLAND RESTORATION PLAN

ANSON COUNTY, NORTH CAROLINA

Title:

Dan. By:

NEW CHANNEL CENTERLINE DATA

DULA THOROUGHFARE

Dwn. By:

ESC Project No.:

04-212

SHEET

B-2C

SUMMARY OF QUANTITIES

SUMMARY OF QUANTITIES							
Bishop Site Stream/Wetland Restoration - Dula Thoroughfare							
ITEM	SPEC	ITEM DESCRIPTION	QUANTITIES	UNIT			
29	SP1	Mobilization	1	LS			
30	SP2	Construction Surveying	1	LS			
31	SP3	Grading	1	LS			
32	1056	Filter Fabric, Type 2	4600	SY			
33	1605	Temporary Silt Fence	6900	LF			
34	1610	Stone for Erosion Control, Class A	1600	TON			
35	1610	Stone for Erosion Control, Class B	105	TON			
36	1610	Stone for Erosion Control, No. 57	62	TON			
37	1610	Stone for Erosion Control, ABC	1726	TON			
38	1615	Temporary Mulching	12	ACR			
39	1620	Seed for Temporary Seeding	780	LB			
40	1620	Fertilizer for Temporary Seeding	1.8	TON			
41	1630	Silt Excvation	300	CY			
42	1660	Permanent Seeding and Mulching	20	ACR			
43	1661	Seed for Repair Seeding	390	LB			
44	1661	Fertilizer for Repair Seeding	0.9	TON			
45	1662	Supplemental Seeding	390	LB			
46	SP6	Coir Fiber Matting, 900 gm	4100	SY			
47	SP8	Impervious Select Material	90	CY			
48	SP9	Pump Around Operation	1	LS			
49	SP10	Special Stilling Basin	4	EA			
50	SP12	Bare Root Seedlings	29243	EA			
51	SP14	Invasive Plant Removal	1	LS			
52	SP17	Disking/Scarification	12	ACR			

Estimates do include quantities for Class A stone and filter fabric for improved on-site access roads if required by weather conditions. The quantities are approximately 480 T of Class A Stone and 1333 SY filter fabric per 1000 linear feet of 12-foot wide improved access road as shown on the plans. ABC Stone is estimated to leave existing farm road in "AS IS or BETTER" condition. Note that all quantities are estimates for infomation and bid comparison purposes only.

SUMMARY OF EARTHWORK

QUANTITIES IN CUBIC YARDS

DULA THOROUGHFARE WEST -D- CHANNEL

Vanation	Total (Cut	EXCAVATION		Total Fill		FILL	BORROW	WASTE	
Xsection	sq ft	cu ft	ENDAVATION	sq ft	cu ft	cuft + %	,	30		
0	21.89	0		1.25	0					
120	124.2	8763.0	325	0.0	75.0	90	3	0	321	
213	128.8	11764.5	436	2.2	100.0	120	4	0	431	
279	96.3	7430.9	275	8.1	336.6	404	15	0	260	
364	131.2	9670.0	358	0.0	342.1	411	15	0	343	
449	78.2	8899.9	330	17.7	753.1	904	33	0	296	
580	133.9	13893.9	515	6.7	1599.5	1919	71	0	443	
687	142.9	14807.2	548	4.9	622.7	747	28	0	521	
823	284.2	29042.8	1076	3.5	574.6	690	26	0	1050	
927	294.0	30070.0	1114	0.0	182.5	219	8	0	1106	
1113	169.2	43082.3	1596	10.5	976.5	1172	43	0	1552	
1200	165.9	14578.2	540	0.0	456.8	548	20	0	520	
1294	156.6	15159.4	561	0.0	0.0	0	0	0	561	
1446	37.4	14743.2	546	15.5	1178.0	1414	52	0	494	
1585	49.9	6066.0	225	13.9	2043.3	2452	91	0	134	
1686	63.0	5703.5	211	11.9	1302.9	1563	58	0	153	
1780	66.9	6107.7	226	6.9	883.6	1060	39	0	187	
1893	281.3	19674.4	729	2.5	528.3	634	23	0	705	
2030	196.5	32731.4	1212	9.6	828.2	994	37	0	1175	
		292188	10822		12784		568	0	10254	
	<u> </u>								10254	
	Project Total	al	10822						10254	

APPROXIMATE QUANTITIES ONLY, UNCLASSIFIED EXCAVATION, BORROW EXCAVATION, FINE GRADING AND CLEARING AND GRUBBING WILL BE PAID FOR AT THE CONTRACT LUMP SUM PRICE FOR "GRADING." A SHRINKAGE FACTOR OF 1.2 WAS ASSUMED.

DULA THOROUGHFARE EAST -T- CHANNEL

Xsection	Total (Cut	EXCAVATION		Total Fill		FILL	BORROW	WASTE
	sq ft	cu ft	ENCAVATION	sq ft	cu ft	cuft + %	1 166	Borato	
0	1.66	0		10.63	0				
100	13.4	754.5	28	20.4	1553.5	1864	69	41	0
220	10.1	1413.6	52	44.5	3897.0	4676	173	121	0
290	41.4	1804.6	67	0.0	1557.9	1869	69	2	0
392	37.4	4017.8	149	21.3	1088.3	1306	48	0	100
506	5.4	2435.0	90	30.4	2950.9	3541	131	41	0
568	12.9	567.0	21	0.0	943.3	1132	42	21	0
629	17.1	915.6	34	16.1	491.1	589	22	0	12
		11908	441		12482		555	226	113
									-114
F	Project Total	al	441		1				-114

APPROXIMATE QUANTITIES ONLY, UNCLASSIFIED EXCAVATION, BORROW EXCAVATION, FINE GRADING AND CLEARING AND GRUBBING WILL BE PAID FOR AT THE CONTRACT LUMP SUM PRICE FOR "GRADING." A SHRINKAGE FACTOR OF 1.2 WAS ASSUMED.

	REVISIONS
-	
A	QUANTITIES REVISED
(' '	CONTINES REVISED

Client:

Project

BISHOP SITE STREAM / WETLAND RESTORATION PLAN

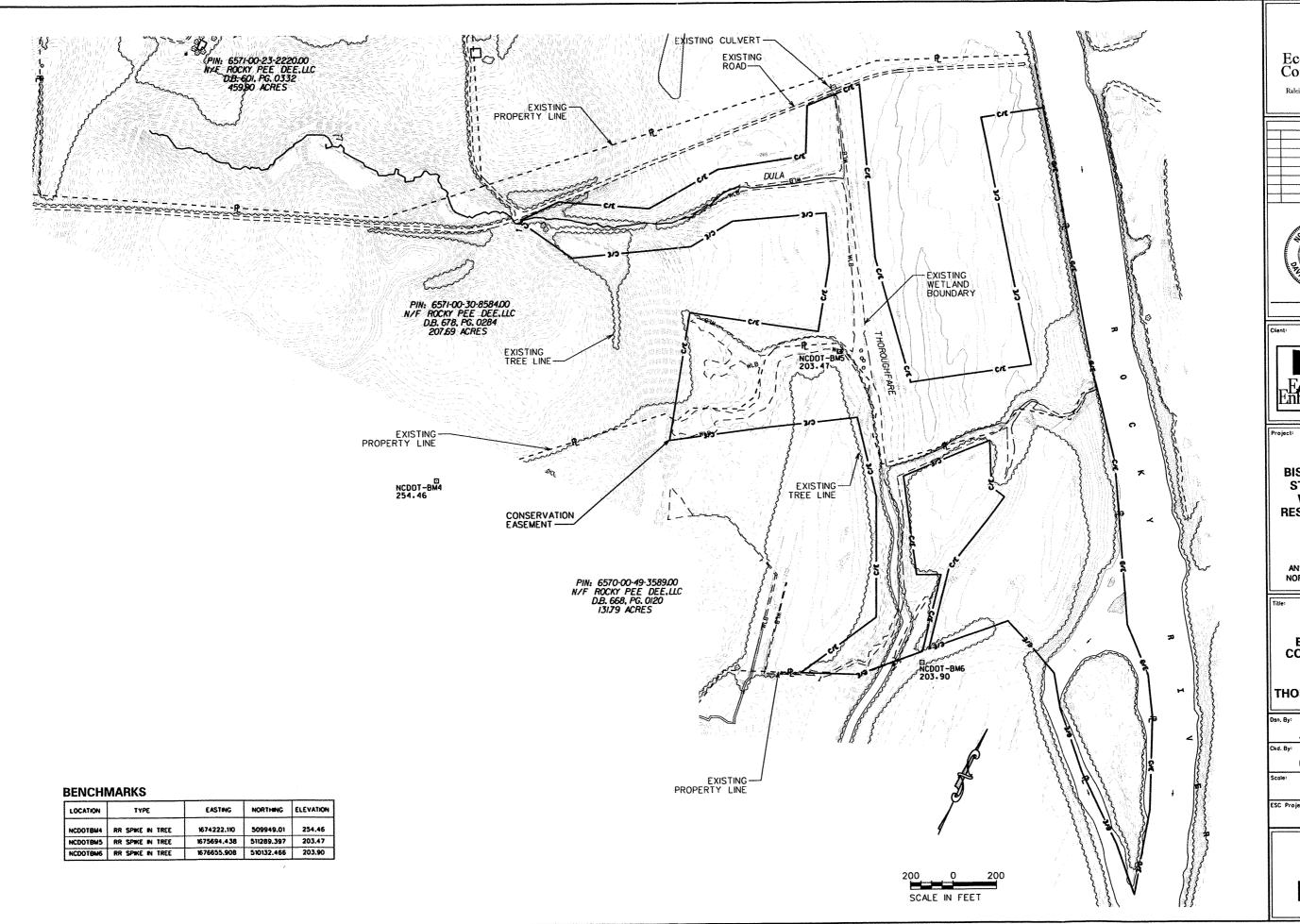
ANSON COUNTY, NORTH CAROLINA

Title:

SUMMARY OF QUANTITIES / SUMMARY OF EARTHWORK

Dan. By:		Dwn. By:
	JDC	MAF
Ckd. By:		Dote:
	DGM	JUN 2005
-		

Scole:


NO SCALE

04-212

ESC Project No.

SHEET

D o

REVISIONS

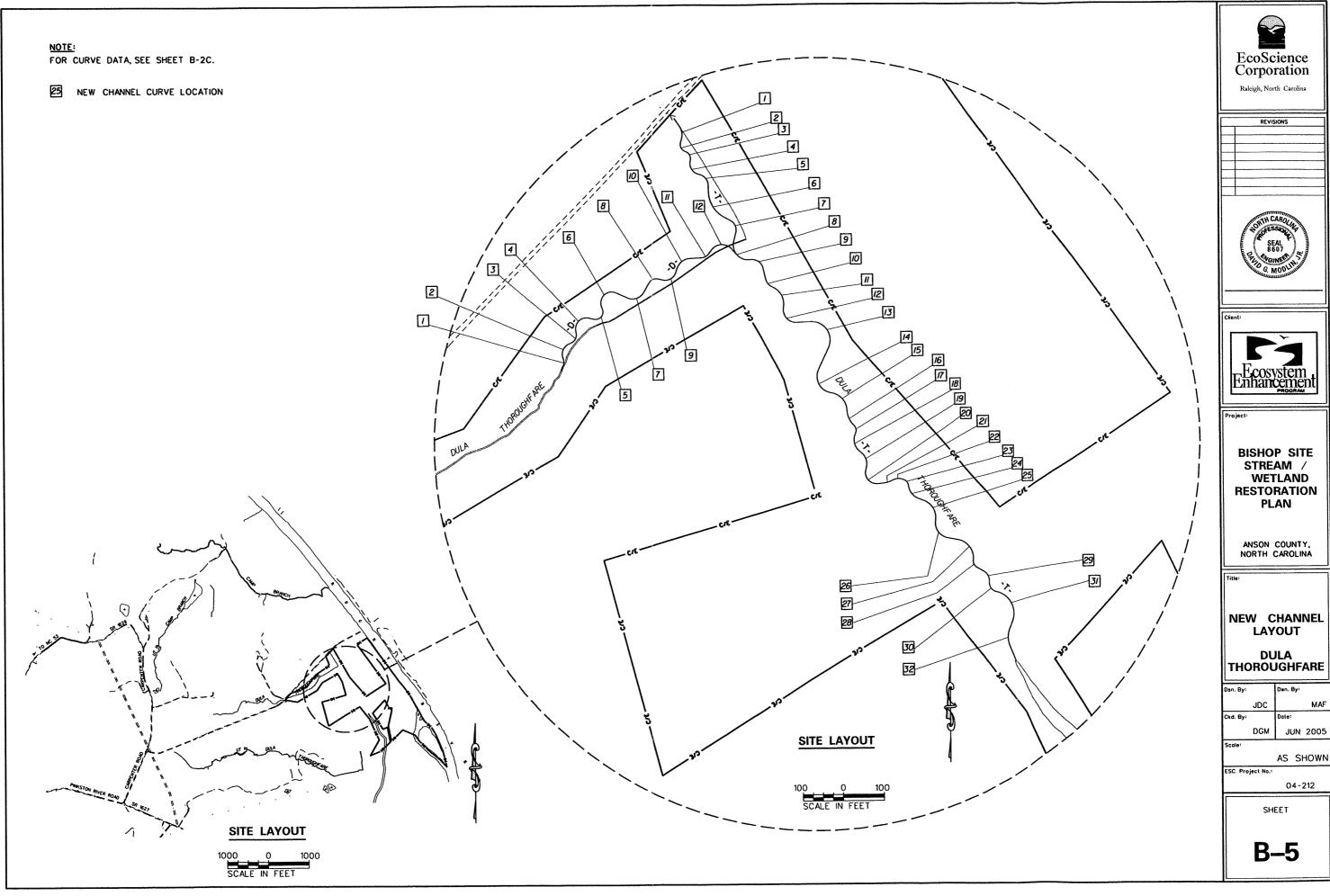
BISHOP SITE STREAM / **WETLAND** RESTORATION **PLAN**

> ANSON COUNTY, NORTH CAROLINA

> **EXISTING** CONDITIONS

DULA THOROUGHFARE

Dan. By:		Dwn, By:	
	JDC		МА
Ckd. By:		Date:	
	DGM	JUN	200
Scole:			

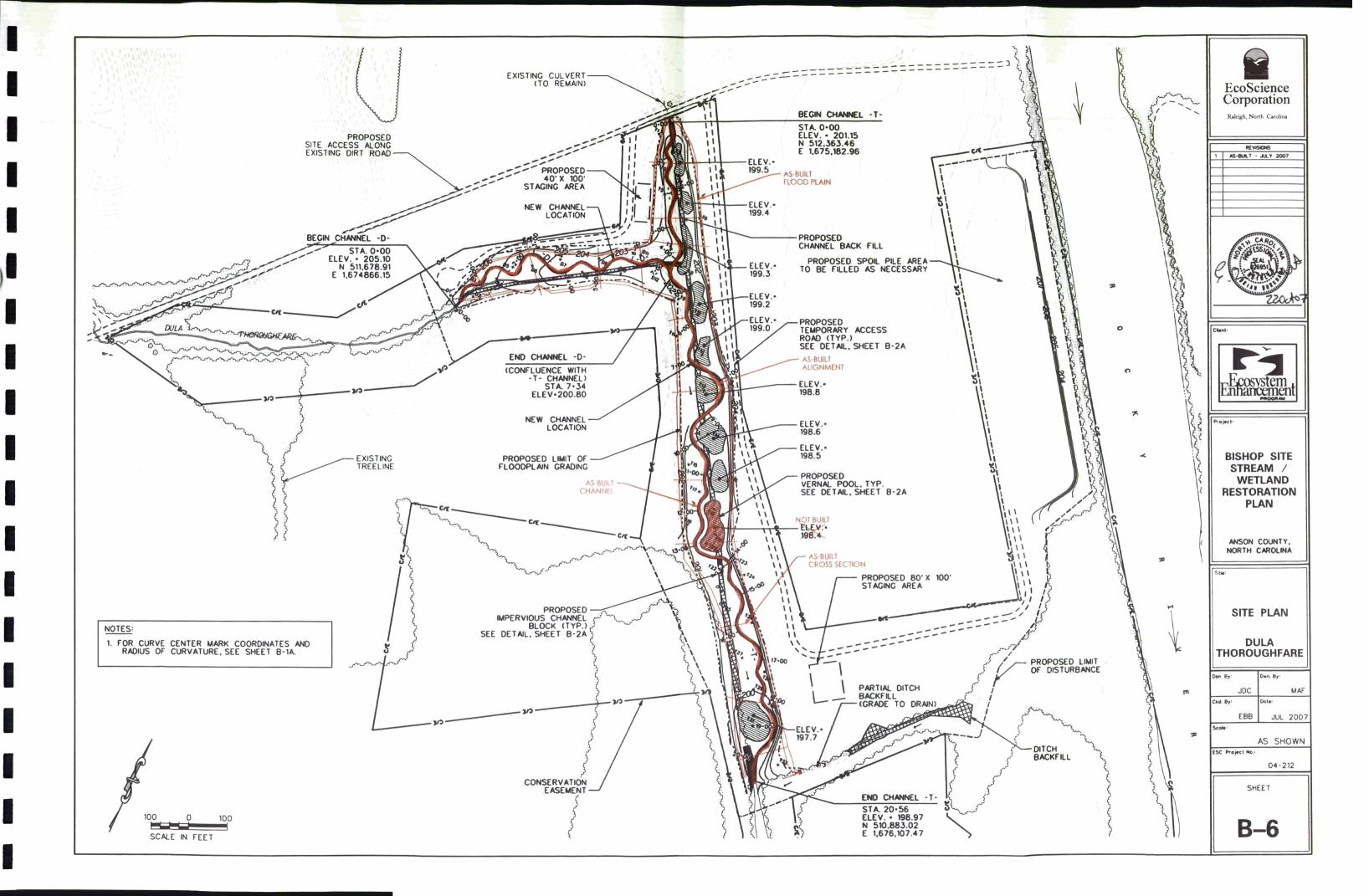

AS SHOWN

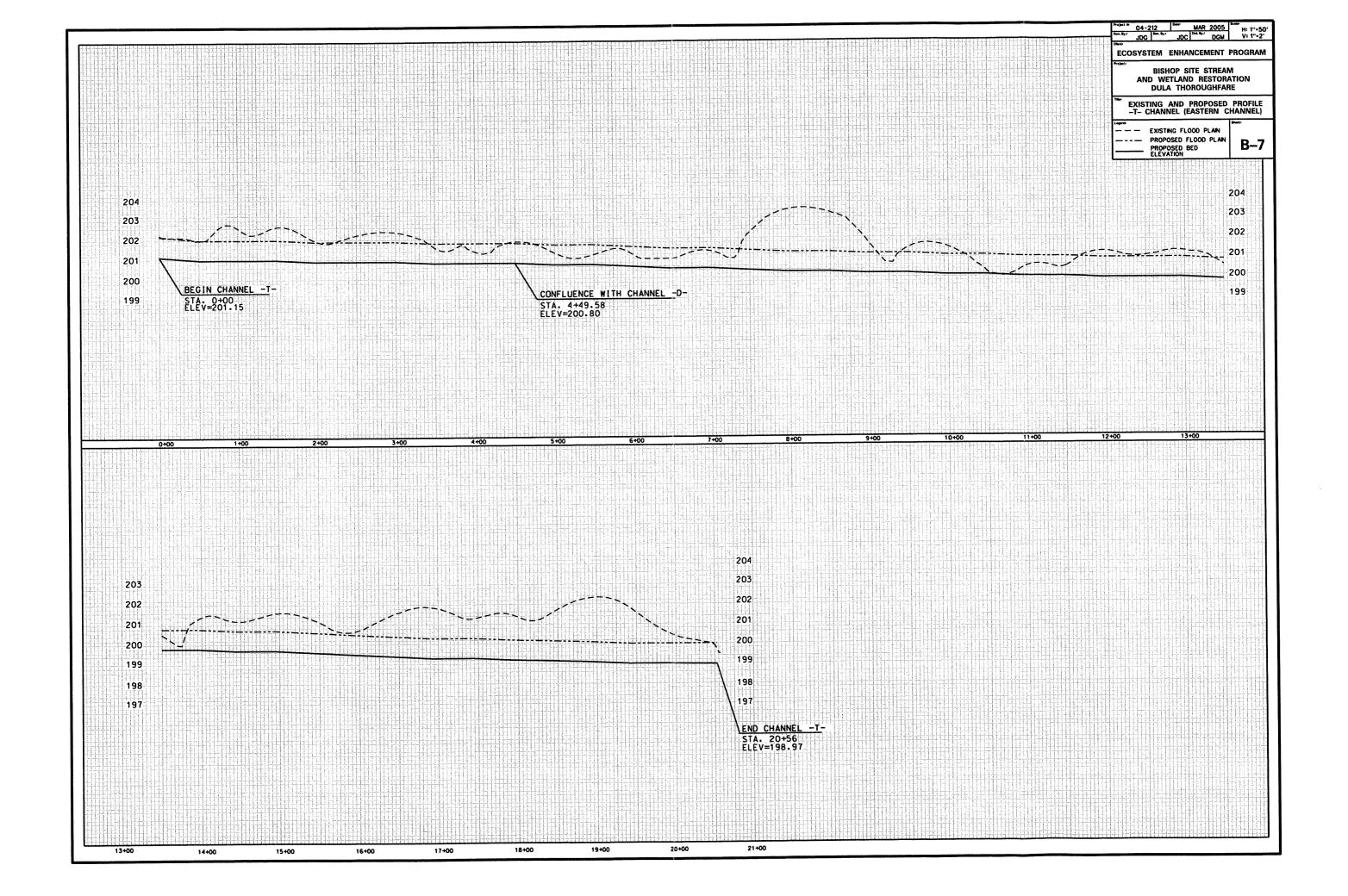
ESC Project No.:

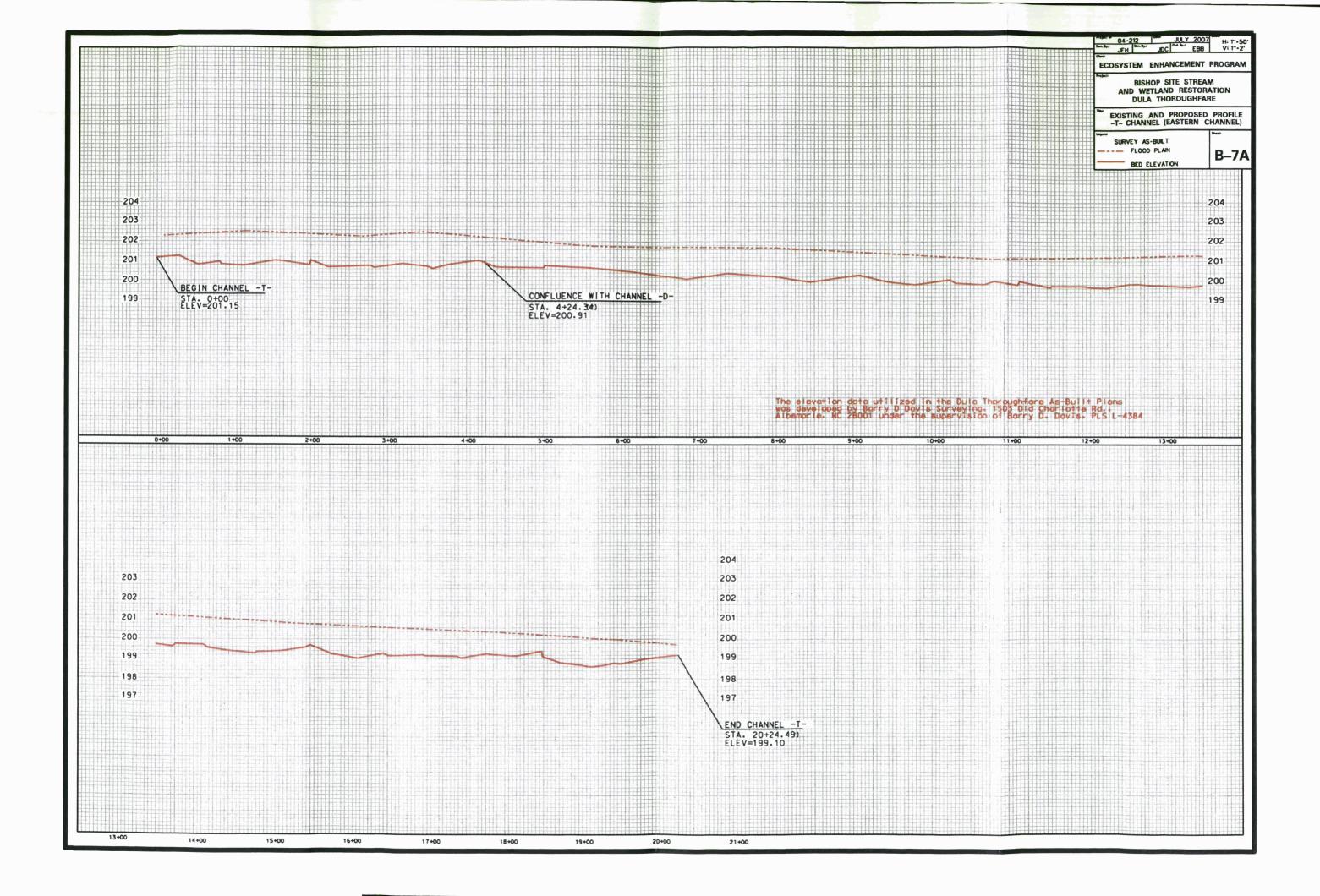
SHEET

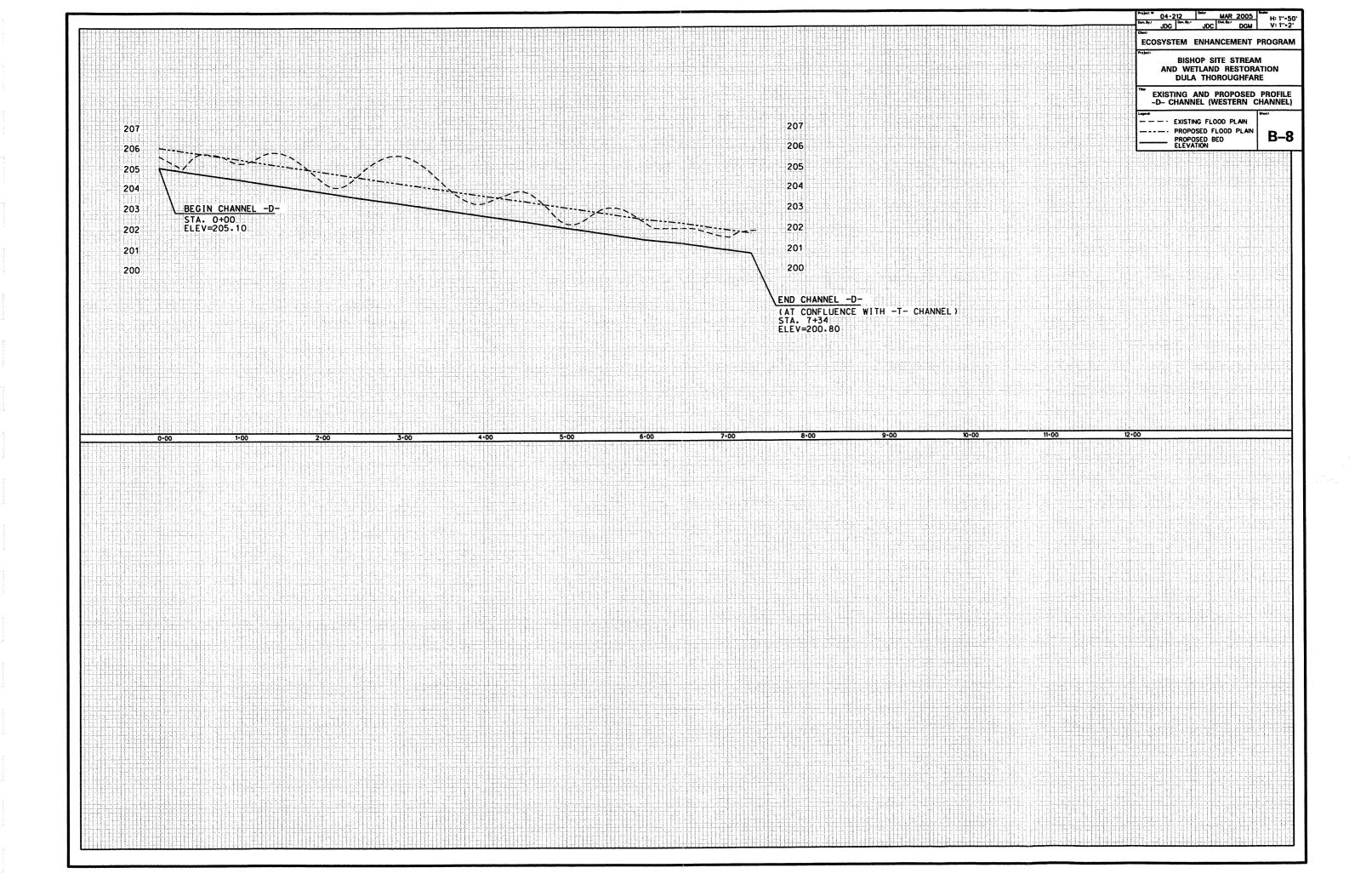
04-212

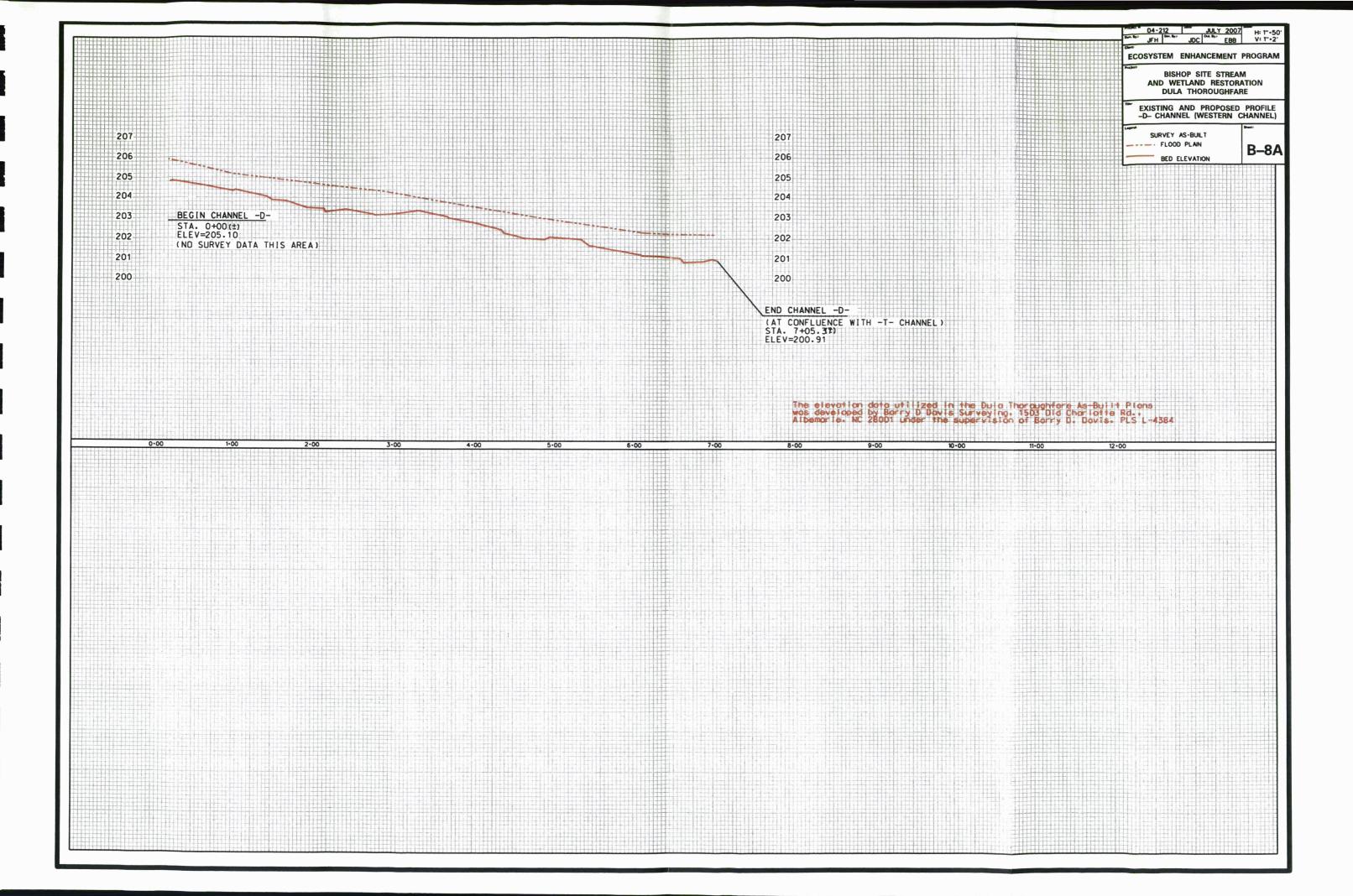
B-4

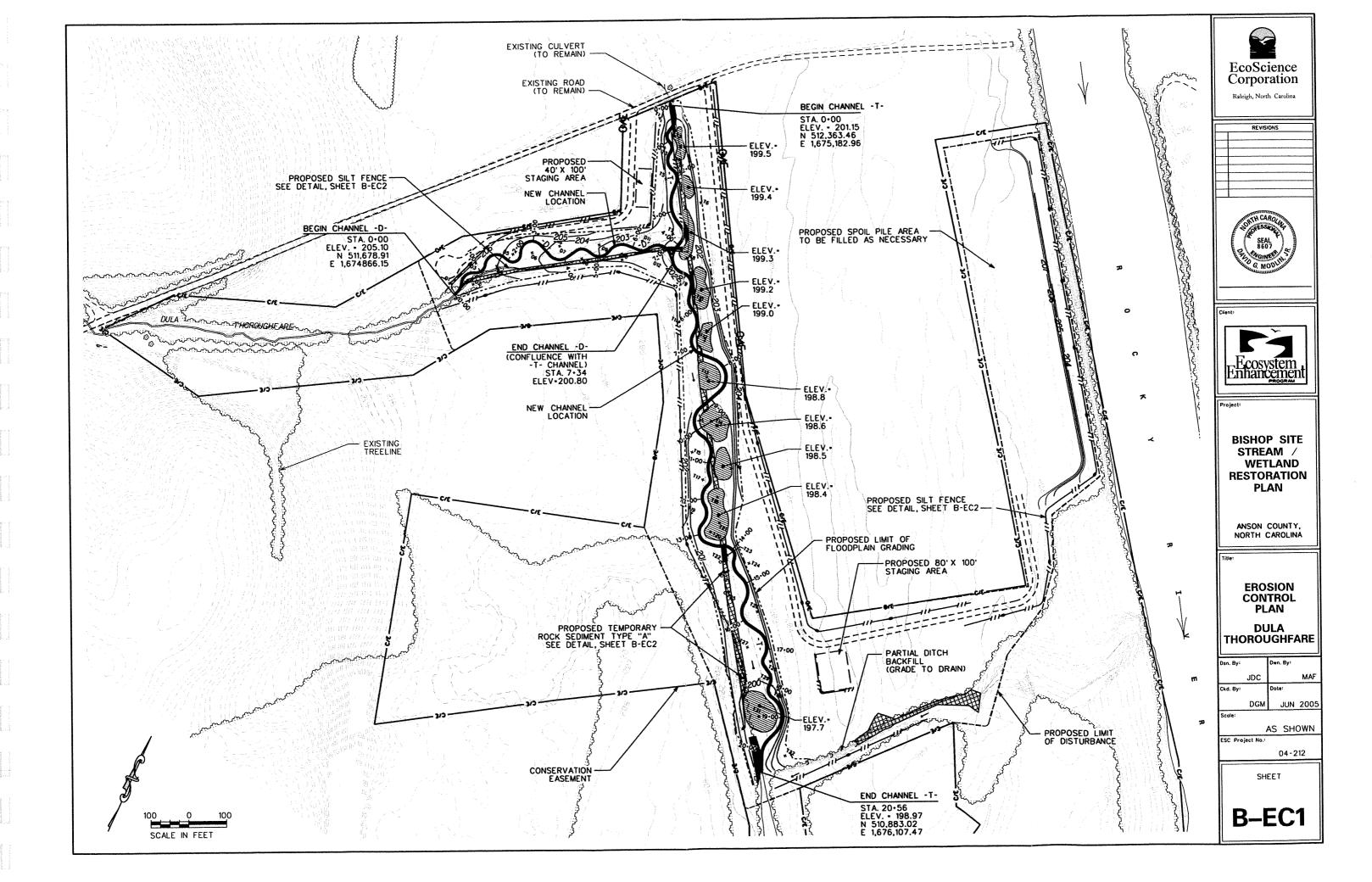


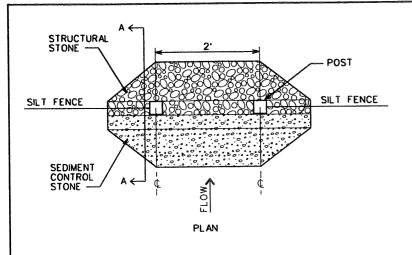


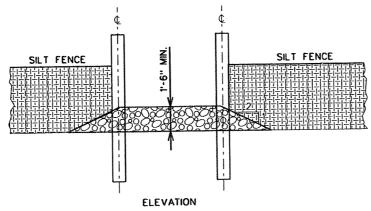

BISHOP SITE STREAM /
WETLAND
RESTORATION

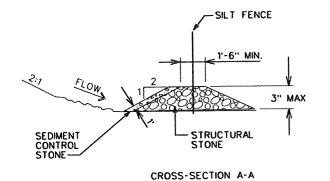

Dsn. By:		Dwn. By:
	JDC	MAF
Ckd. By:		Date:
	DGM	JUN 2005
Scale:		


AS SHOWN



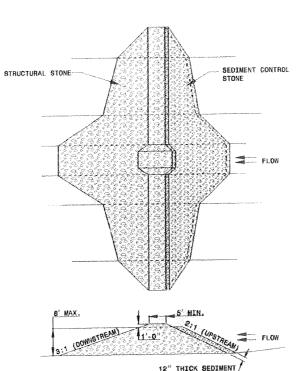






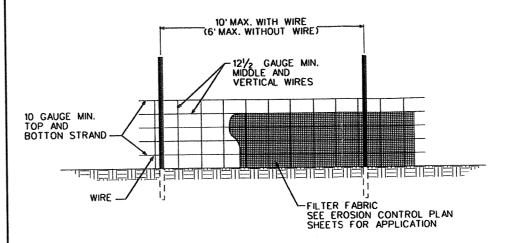
NOTES:

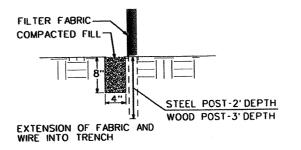
- 1. STRUCTURAL STONE SHALL BE (CLASS "B") STONE FOR EROSION CONTROL PURPOSES.
- 2. SEDIMENT CONTROL STONE SHALL BE NO. 5 OR NO. 57 STONE.


STONE OUTLET DETAIL

NOTE:

USE CLASS B STONE FOR STRUCTURAL STONE AND PAY FOR AT THE CONTRACT UNIT PRICE PER TON STONE FOR EROSION CONTROL, CLASS B.


USE NO. 5 OR NO. 57 STONE FOR SEDIMENT CONTROL AND PAY FOR AT THE CONTRACT UNIT PRICE PER TON SEDIMENT CONTROL STONE.


DO NOT USE SEDIMENT DAM IN LIVE STREAM.

TEMPORARY ROCK SEDIMENT DAM TYPE "A"

(NCDOT 1634.01)

NOTES:

- USE WIRE A MINIMUM OF 32 INCHES IN WIDTH AND WITH A MINIMUM OF 6 LINE WIRES WITH 12 INCH STAY SPACING.
- 2. USE FILTER FABRIC A MINIMUM OF 36 INCHES IN WIDTH AND FASTEN ADEQUATELY TO THE WIRE AS DIRECTED BY THE ENGINEER.
- 3. PROVIDE 5 FOOT STEEL POST OF THE SELF-FASTENER ANGLE STEEL TYPE.
- 4. USE 6 FOOT WOOD POST WITH 3 INCH DIAMETER.

NCDOT BMP'S FOR CONSTRUCTION AND MAINTENANCE ACTIVITIES, 5.1.1, AUGUST 2003

TEMPORARY SILT FENCE
NCDOT STD, DWG. 1605.01

REVISIONS

Client

Project

BISHOP SITE STREAM / WETLAND RESTORATION PLAN

ANSON COUNTY, NORTH CAROLINA

Title:

EROSION CONTROL DETAILS

DULA THOROUGHFARE

JDC MAF

Ckd. By: DGM JUN 2005

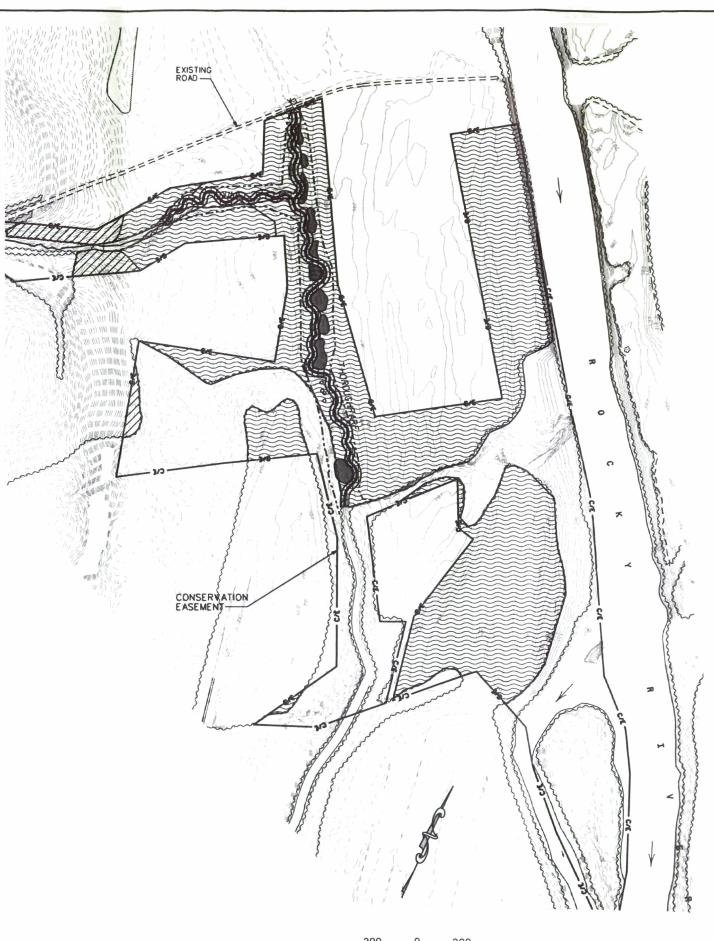
Scole:

NO SCALE

ESC Project No.:

04-212

SHEET


B-EC2

PLANTING TABLE

Vegetation /	Botton Hardwood	Forest	Stream Assem	blage	Mesic I Hardwood		Total	Total	
Stems/Acre (Spacing) Planted Area (acres)		680 feet x 8		2720 feet x 4	(4- l-feet)	68 (8-feet x	-		1014
		34.	1	1.8		1.7		37.6	2
Species ¹	Common Name	Number Planted	% of Total	Number Planted	% of Total	Number Planted	% of Total	Number Planted	Numbe
Quercus michauxii	swamp chestnut oak	2087	9		7.53.51		1,3351	2087	2100
Ulmus americana	American elm	1623	7					1623	1700
Celtis laevigata	sugarberry	1623	7					1623	1700
Fraxinus pennsylvanica	green ash	1623	7					1623	3300
Carya ovata	shagbark hickory	1623	7					1623	1700
Quercus phellos	willow oak	2087	9					2087	2100
Nyssa biflora	swamp tupelo	1623	7					1623	3300
Platanus occidentalis	sycamore	1623	7					1623	1700
Quercus nigra	water oak	1623	7					1623	3100
Carya cordiformis	bitter-nut hickory	1623	7					1623	
Quercus pagoda	cherrybark oak	1623	7					1623	1700
Carpinus caroliniana	musclewood	1623	7					1623	
Asimina triloba	pawpaw	1391	6					1391	1400
llex opaca	American holly	1391	6			92	8	1483	
Arundinaria gigantea	giant cane			392	8			392	
Betula nigra	river birch			588	12			588	2000
Cornus amomum	silky dogwood			490	10			490	2000
Salix nigra ²	black willow			490	10			490	
Ainus serrulata	tag alder			490	10			490	
Cephalanthus occidentalis	buttonbush			490	10			490	1000
Sambucus canadensis	elderberry			490	10			490	
Viburnum dentatum	arrow-wood			490	10			490	
Viburnum nudum	possum-haw			490	10			490	
Vaccinium corymbosum	highbush blueberry			490	10			490	
Fagus grandifolia	American beech					162	14	162	200
Carya tomentosa	mockernut hickory					139	12	139	200
Carya glabra	sweet pignut hickory					139	12	139	200
Quercus alba	white oak					185	16	185	200
Quercus rubra	northern red oak					162	14	162	200
Quercus falcata	southern red oak					162	14	162	200
Cornus florida	dogwood					116	10	116	200
Total		23186	100	4900	100	1157	100	29243	30200

All stems are to be bare-root seedlings except where noted

²Live stakes are acceptable for black willow individuals if bare-root seedlings are unavailable

SCALE IN FEET

Raleigh, North Carolina

REVISIONS

1 AS-BUILT - JULY 2007

Clien

Projec

BISHOP SITE STREAM / WETLAND RESTORATION PLAN

ANSON COUNTY, NORTH CAROLINA

Title:

PLANTING PLAN

DULA THOROUGHFARE

Dan. By:		Dwn. By:
	JDC	MAF
Ckd. By:		Dote:
	EBB	JUL 2007
2		

AS SHOWN

ESC Project No.: 04-212

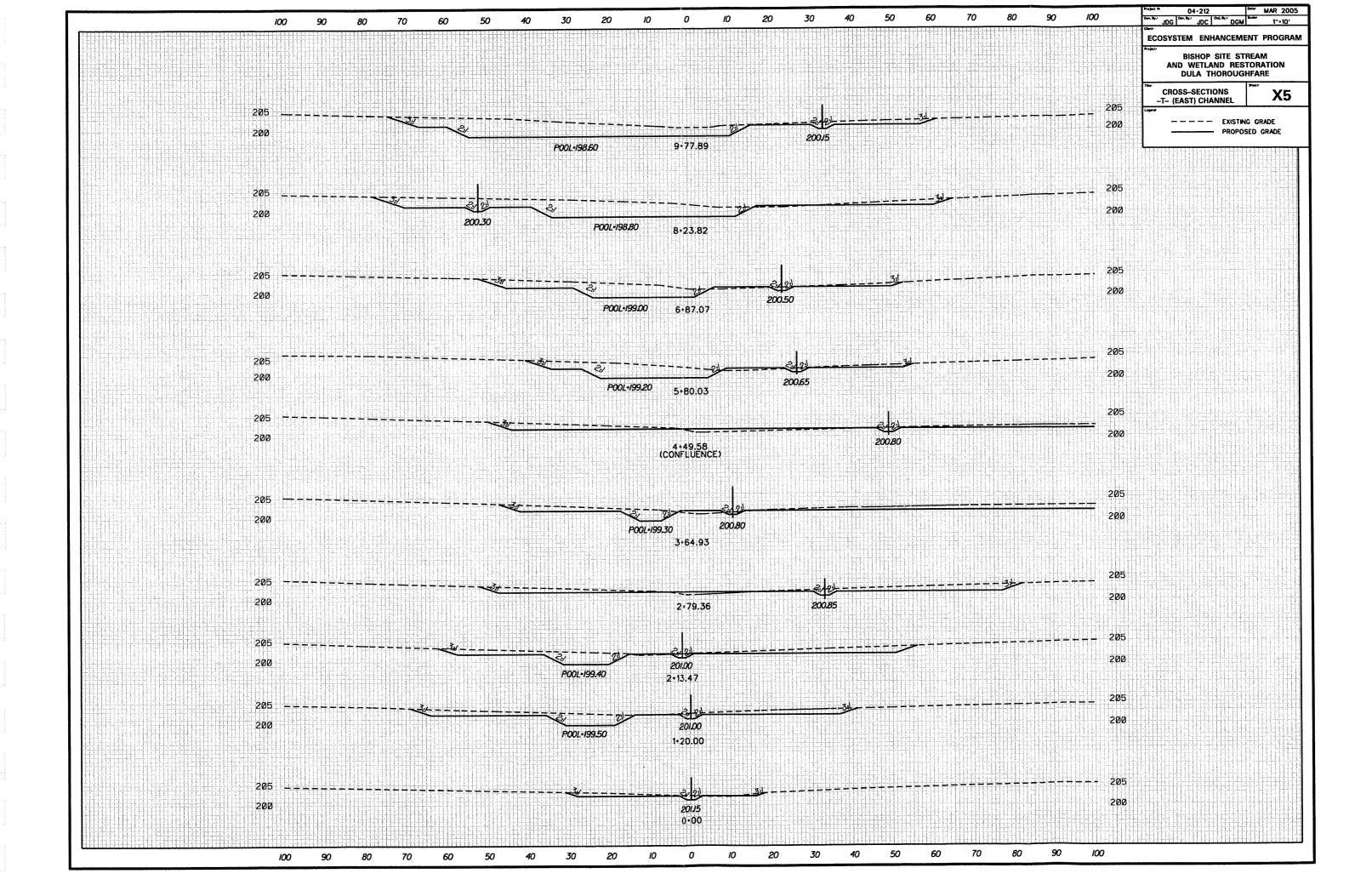
SHEET

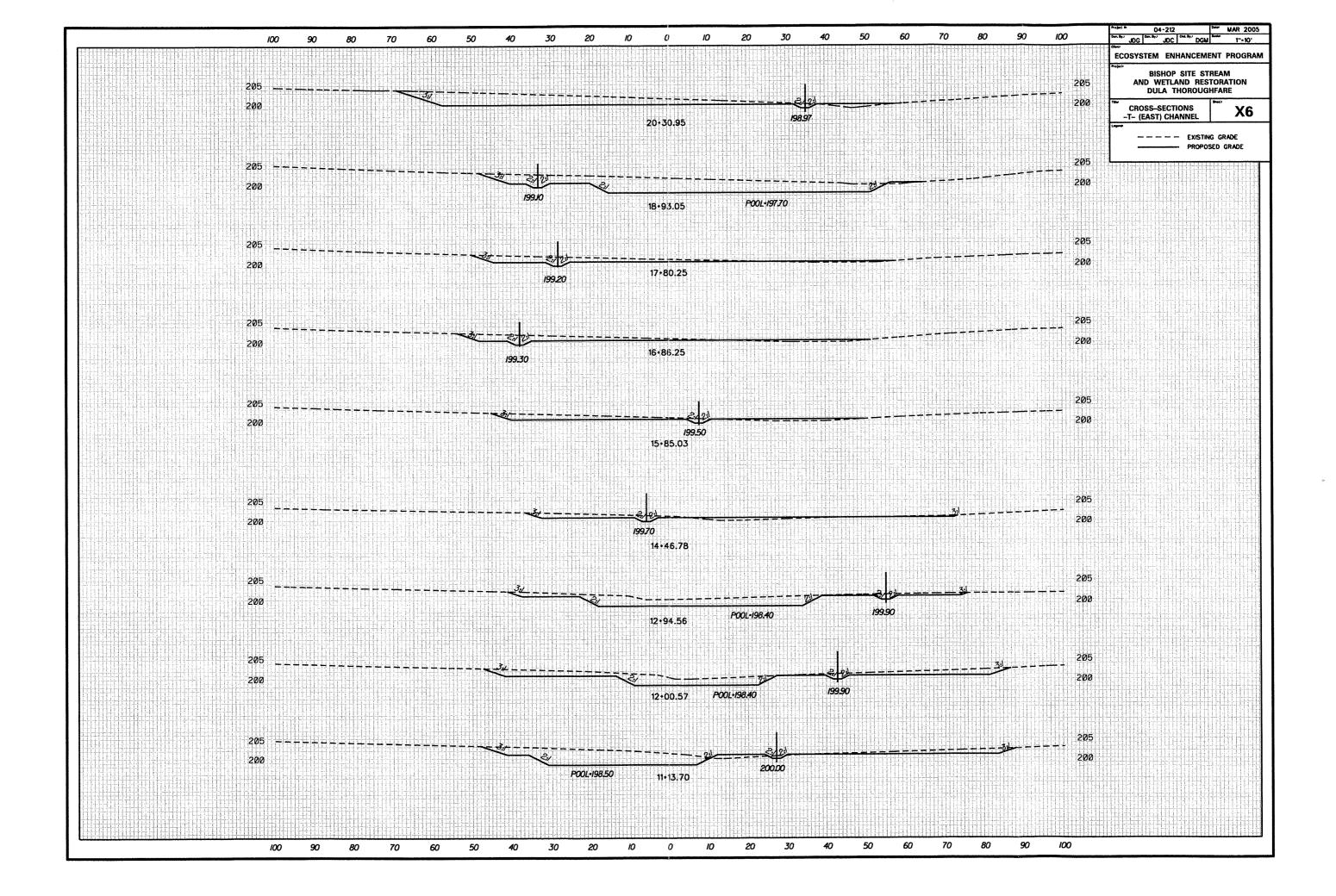
B-L1

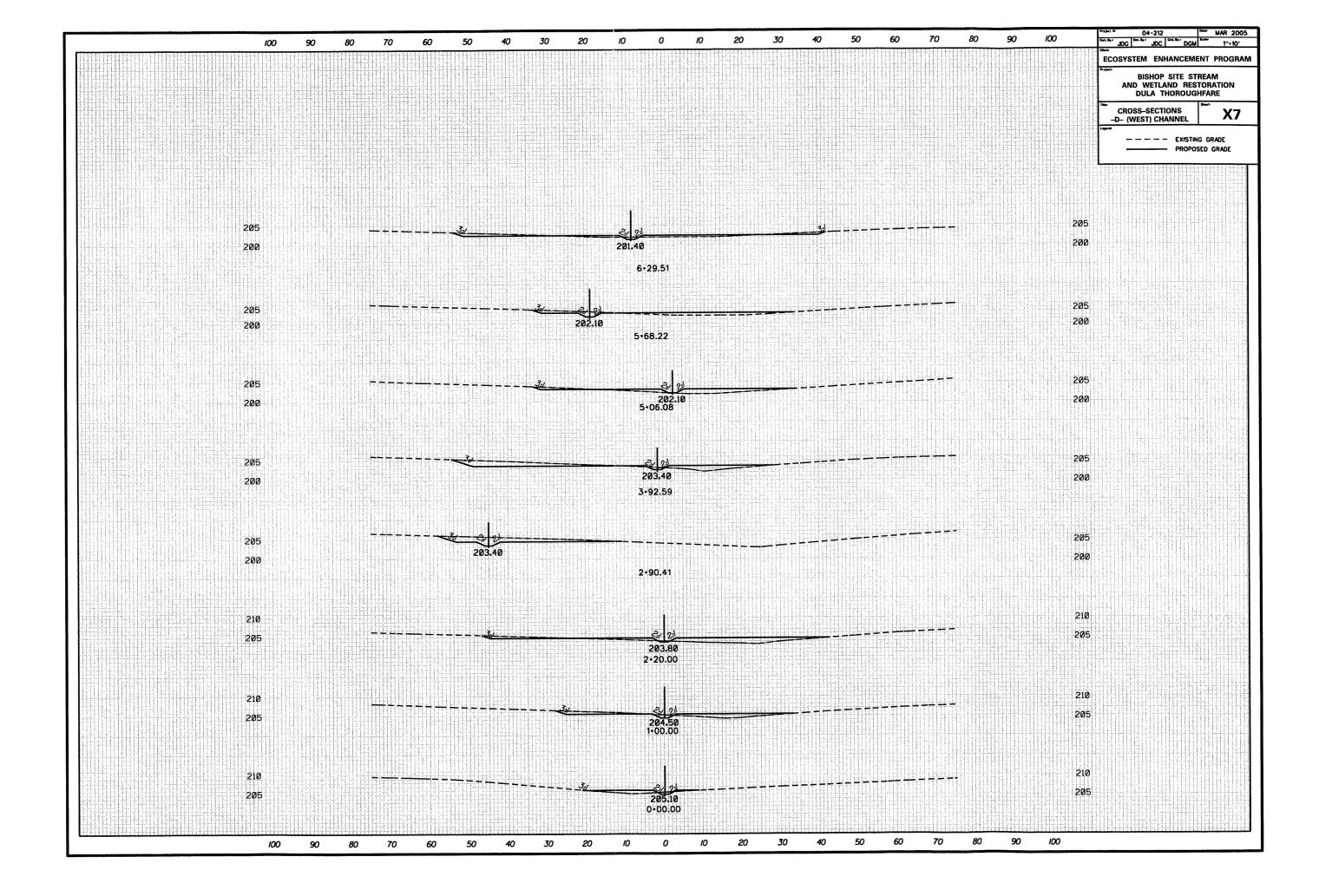
STREAMSIDE ASSEMBLAGE (15' EACH SIDE OF CHANNEL)	1.8	ACRES
--	-----	-------

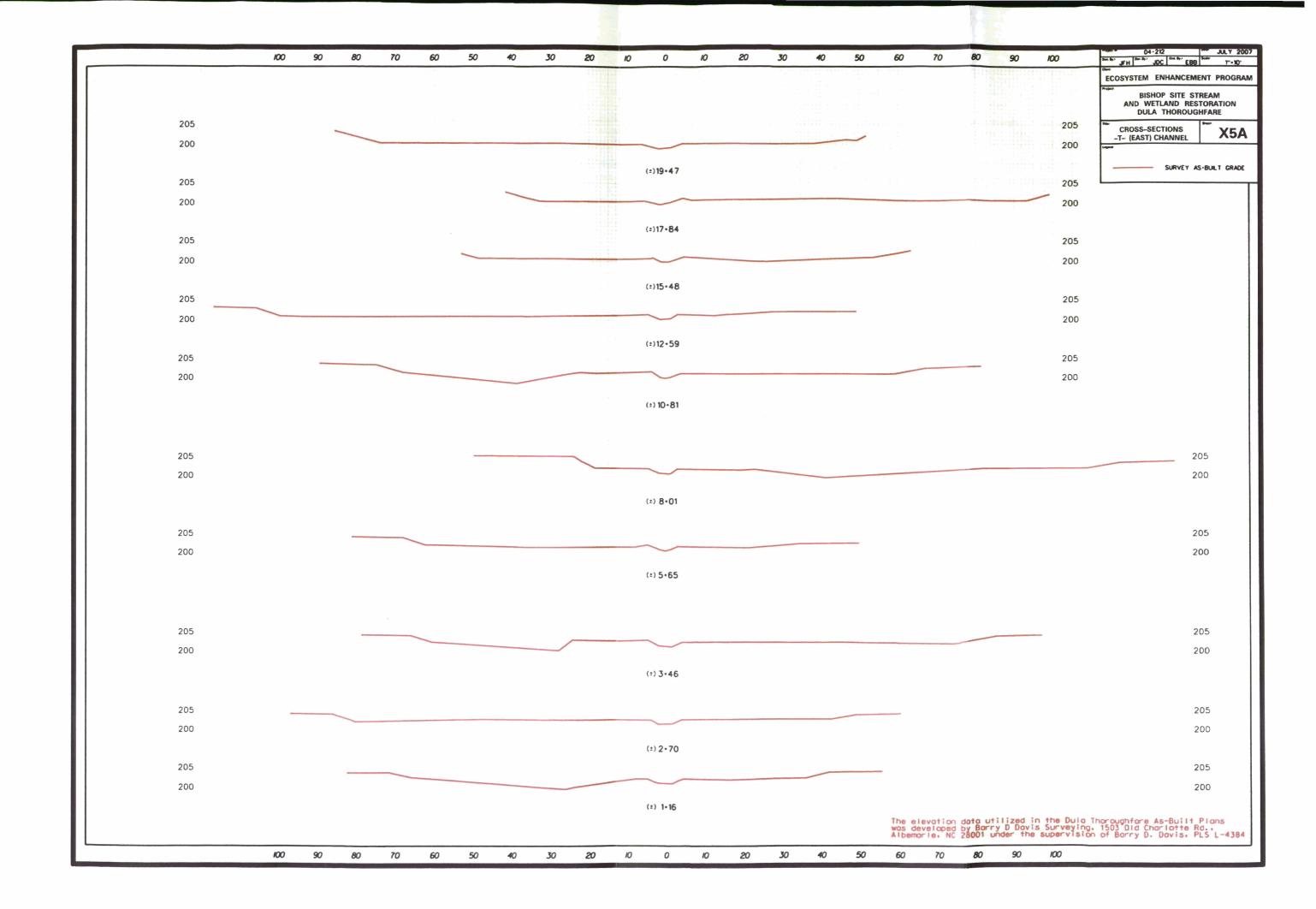
PLANT COMMUNITIES

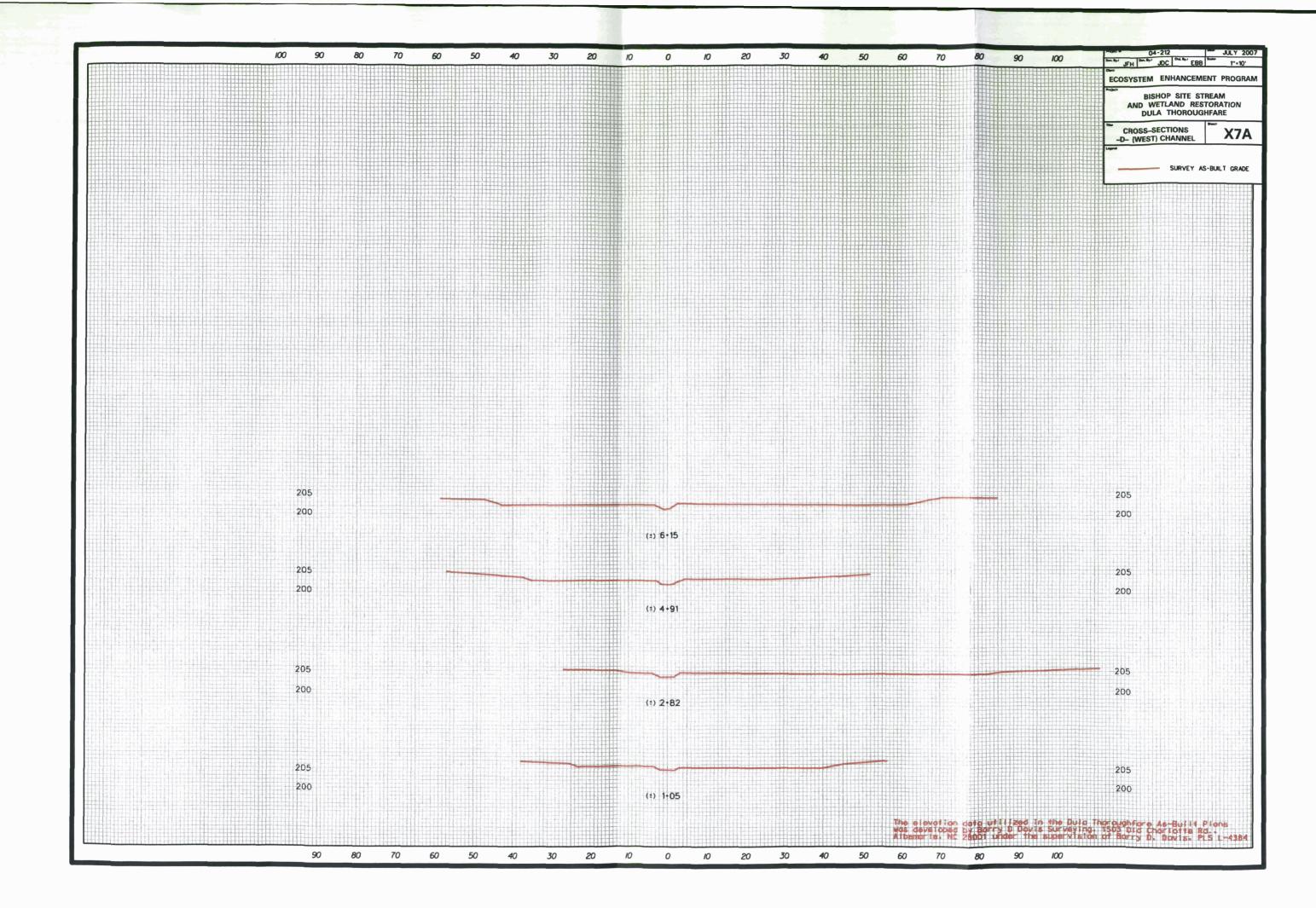
MESIC MIXED FOREST


MESIC MIXED HARDWOOD 1.7 ACRES FOREST


BOTTOMLAND 34.1 ACRES


TOTAL: 37.6 ACRES

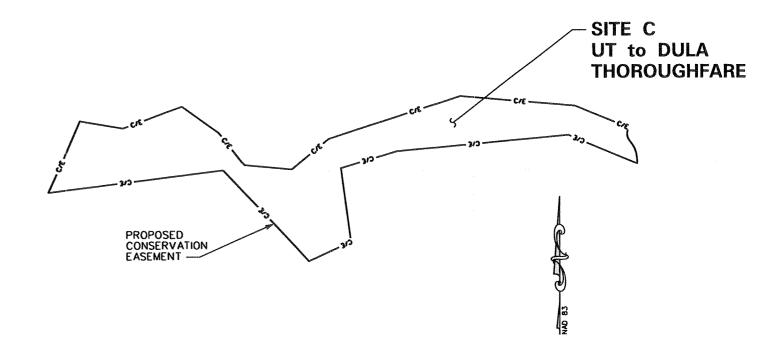

NOTES

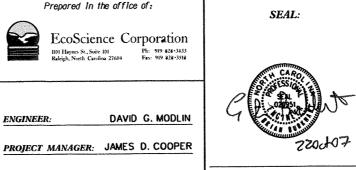

- THERE SHALL BE NO PLANTING IN AREAS DESIGNATED AS VERNAL POOLS. -SEE SHEET B-6, "SITE PLAN, DULA THOROUGHFARE"
- 2. STREAMSIDE ASSEMBLAGE PLANTING SHALL BE LIMITED TO AN AREA 15' FROM BANKS OF PROPOSED CHANNEL.
- 3. EXISTING TREE LINE SHALL MARK LIMIT OF PROPOSED PLANTING EXCEPT WHERE EXISTING TREELINE IS TO BE MODIFIED FOR PROPOSED CHANNEL.

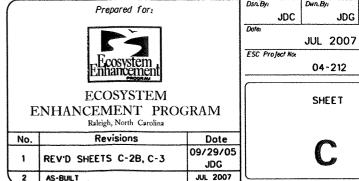
CONSTRUCTION SEQUENCE

- 1. MOBILIZE EQUIPMENT AND MATERIALS TO THE UT TO DULA THOROUGHFARE SITE.
- 2. ESTABLISH ACCESS ROADS AND STAGING AREAS AS DEPICTED ON THE PLANS OR AS DIRECTED BY THE PROJECT MANAGER AND MARK CONSTRUCTION EQUIPMENT ACCESS LOCATIONS WITH VISIBLE MARKERS. CONSTRUCTION EQUIPMENT SHALL BE MAINTAINED AND SERVICED WITHIN THE LIMITS OF THE ESTABLISHED STAGING AREAS. THE CONTRACTOR SHALL BE RESPONSIBLE FOR MAINTAINING ALL STAGING AREAS IN AN ENVIRONMENTALLY SENSITIVE MANNER.
- 3. INSTALL IMPROVEMENTS TO SITE ACCESS ROAD(S) IF REQUIRED AND INSTALL TEMPORARY EROSION CONTROL MEASURES (I.E., SILT FENCE, ROCK OUTLETS, ETC.) AS REQUIRED.
- 4. AT THE END OF EACH DAY OF CONSTRUCTION, THE CONTRACTOR
 SHALL PROVIDE TEMPORARY SEED AND MULCH AND APPLY COIR FIBER MATTING,
 AS APPROPRIATE, TO ALL DISTURBED AREAS. IN ADDITION, THE CONTRACTOR SHALL
 BE RESPONSIBLE FOR MAINTAINING ALL TEMPORARY EROSION CONTROL MEASURES
 ON A DAILY BASIS THROUGHOUT THE CONSTRUCTION PERIOD.
- 5. INSTALL PUMP-AROUND OPERATION JUST ABOVE THE UPSTREAM SERIES OF GRADE CONTROL STRUCTURES. CONSTRUCT THE GRADE CONTROL STRUCTURES PER DETAIL AND AS SHOWN ON PLAN SHEET C-2B. THE STRUCTURE ELEVATION AND SPACING SHALL DETERMINED IN THE FIELD BY THE DESIGNER. PROCEED DOWNSTREAM TO THE NEXT SERIES OF GRADE CONTROL STRUCTURES. CONSTRUCT IN LIKE MANNER. PROCEED TO THE FINAL SERIES OF STRUCTURES. CONSTRUCT IN LIKE MANNER.
- 6. PROCEEDING FROM THE UPSTREAM END OF THE PROPOSED CHANNEL WORK, THE CONTRACTOR SHALL MOVE SPOIL PILES GENERALLY LOCATED BETWEEN THE RELIC STREAM AND THE DUG STREAM TO FILL THE DUG STREAM IN AN EFFORT TO RESTORE THE RELIC STREAM. A SINGLE CONTINOUS STREAM SHALL BE FORMED FROM THE TWO ADJACENT CHANNELS. DUE TO THE MINOR INSTREAM WORK ASSOCIATED WITH THE CONNECTION OF CHANNEL SEGMENTS, THE SIZE OF THE CHANNELS AND THE PROXIMITY OF THE TWO CHANNELS, THIS WORK SHALL BE PERFORMED IN THE WET.
- 7. THE CONTRACTOR SHALL PLACE THE EXISITING BORROW MATERIAL IN AREAS AT THE DIRECTION OF THE PROJECT MANAGER.
- 8. CONSTRUCT THE PERMANENT CHANNEL FORD AT THE DOWNSTREAM END OF THE PROJECT AS SHOWN IN THE DETAIL ON SHEET C-2A AND ON PLAN SHEET C-6. THIS WORK SHALL REQUIRE A PUMP-AROUND OPERATION AND SHALL BE CONSTRUCTED IN THE DRY.
- 9. ONCE CONSTRUCTION IS COMPLETE THE CONTRACTOR SHALL REMOVE ALL CONTRUCTION MATERIALS FROM THE CONSERVATION EASEMENT, DISPOSE OF THEM IN AN APPROVED DUMP SITE AND SCARIFY ANY COMPACTED AREAS AS DIRECTED BY THE PROJECT MANAGER. TO COMPLETE PERMANENT SEEDING AND MULCHING, ALL DISTURBED AREAS SHALL BE DISKED OR PLOWED TO CREATE MICROTOPOGRAPHY TO THE SATISFACTION OF THE PROJECT MANAGER AND PERMANENTLY SEEDED AND MULCHED. IMPROVED ACCESS ROADS, IF ANY, SHALL REMAIN. STONE APPLIED TO ACCESS ROADS, IF ANY, SHALL REMAIN OR BE REMOVED AS INDICATED ON PLAN SHEET 2.

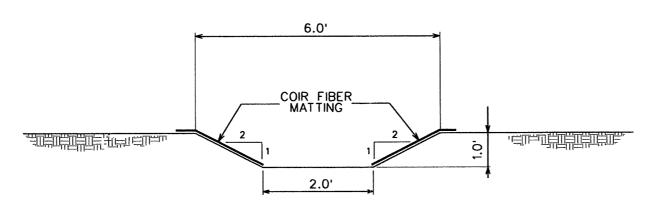
INDEX OF SHEETS


UT TO DULA THOROUGHFARE


- C: CONSTRUCTION SEQUENCE
- C-1: MORPHOLOGICAL TABLE / STRUCTURE TABLE NOT APPLICABLE
- C-2: TYPICAL SECTIONS
- C-2A, C-2B: GENERAL DETAILS
 - C-3: SUMMARY OF QUANTITIES / SUMMARY OF EARTHWORK
 - C-4: EXISTING CONDITIONS
 - C-5: NEW CHANNEL LAYOUT NOT APPLICABLE
 - C-6: SITE PLAN
 - C-7: PROFILE UT TO DULLA THOROUGHFARE NOT APPLICABLE
 - C-EC1: EROSION CONTROL PLAN
 - C-EC2: EROSION CONTROL DETAILS
 - C-L1: PLANTING PLAN
 - X: CROSS-SECTIONS NOT APPLICABLE


SITE C UT TO DULA THOROUGHFARE

TYPE OF WORK: STREAM AND WETLAND RESTORATION / ENHANCEMENT


• STREAM ENHANCEMENT
• WETLAND RESTORATION / ENHANCEMENT • SITE PLANTING

EBB

TYPICAL CHANNEL CROSS-SECTION

NOTE: USE 6.5-FOOT COIR FIBER EACH SIDE.

NOTE:

1. THE RELIC CHANNEL SHALL NOT BE DISTURBED BUT AS NEEDED. THIS CROSS SECTION IS A GUIDE FOR REQUIRED CHANNEL WORK.

REVISIONS

Client:

Project:

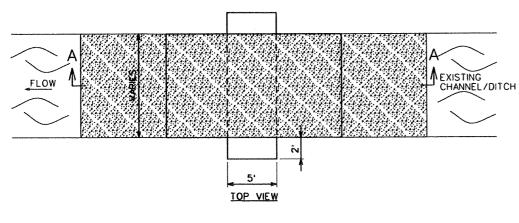
BISHOP SITE STREAM / WETLAND RESTORATION PLAN

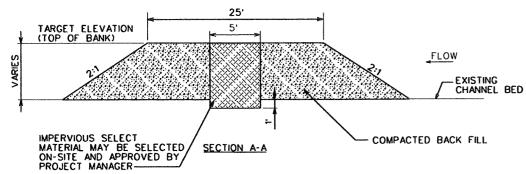
ANSON COUNTY, NORTH CAROLINA

Title

TYPICAL SECTIONS

UT TO DULA THOROUGHFARE

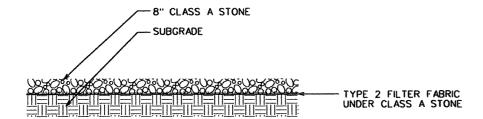

Dsn. By:		Dwn. By:	
	JDC	l	MAF
Ckd. By:		Date:	
	DGM	JUN	2005
Scole:			
		NO	SCALE


ESC Project No.:

SHEET

04-212

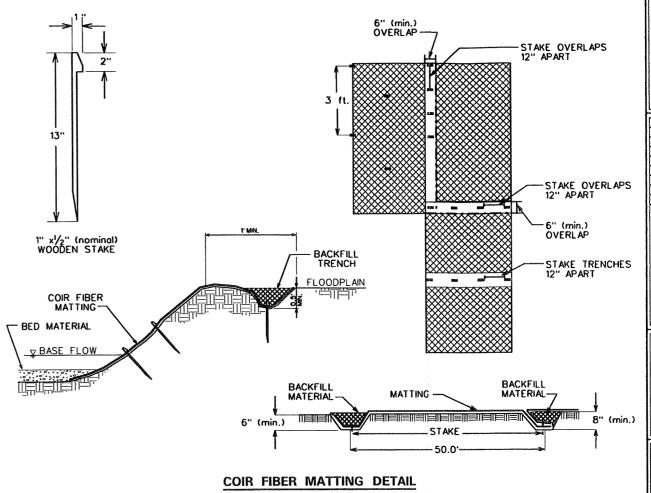
C-2

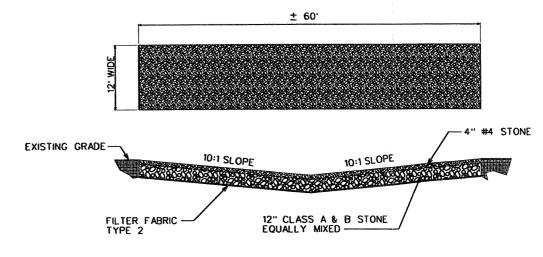


IMPERVIOUS CHANNEL BLOCK DULA THOROUGHFARE

NOTE:

- CHANNEL PLUG WILL BE INITIALLY FILLED WITH AVAILABLE WASTE AND COMPACTED TO NINETY-FIVE PERCENT STANDARD PROCTOR.
- 2. THEN A CENTRAL PORTION 5 FEET LONG WILL BE REMOVED AND REPLACED WITH IMPERVIOUS SELECT MATERIAL.
- 3. THE IMPERVIOUS SELECT MATERIAL WILL BE KEYED INTO THE ORIGINAL BANK A MINIMUM OF 2 FEET AND INTO THE ORIGINAL BED A MINIMUM OF 1 FEET.




NOTES:

1. THIS IS THE MINIMUM ACCEPTABLE SECTION.

ACCESS ROAD SECTION DETAIL

SUGGESTED OR EQUIVALENT

NOTES:

- CONTRACTOR TO EXCAVATE APPROXIMATELY SIXTEEN INCHES DEEP CHANNEL FOR PERMANENT STREAM CROSSING.
- 2. LAY FILTER FABRIC ALONG ENTIRE LENGTH OF BED.
- 3. FILL WITH TWELVE INCHES OF "CLASS A" AND "CLASS B" STONE, EQUALLY MIXED, FOLLOWED BY FOUR INCHES OF #4 STONE TO BRING FINISHED GRADE UP TO LEVEL OF PROPOSED STREAM BED.

PERMANENT CHANNEL FORD

Raleigh, North Carolina

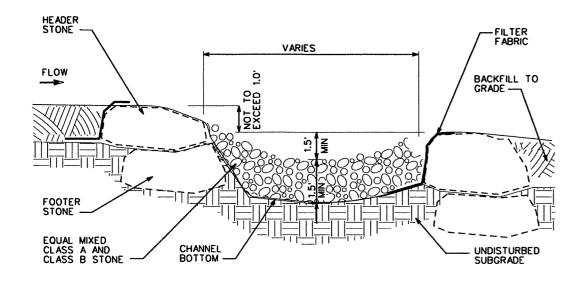
REVISIONS

Client:

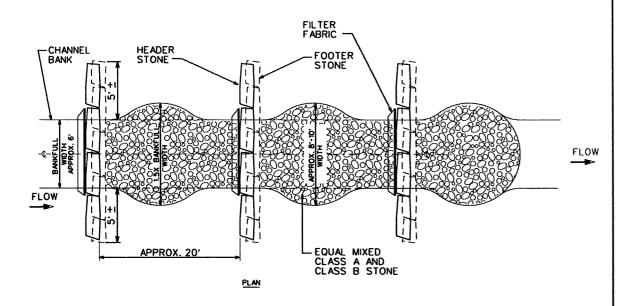
Project:

BISHOP SITE STREAM / WETLAND RESTORATION PLAN

ANSON COUNTY, NORTH CAROLINA

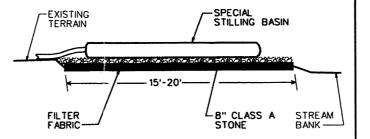

Title:

GENERAL DETAILS


UT TO DULA THOROUGHFARE

Dsn. By:		Dwn. By:	
	JDC		MA
Ckd. By:		Date:	
	DGM	JUN	200
Scole:			
		NO	SCAL
ESC Pro	ject No.:		
		04-	212

SHEET



PROFILE

TYPICAL ROCK SILL

NOT TO SCALE

MOTE:

1. WHEN PUMPING CLEAN WATER, THE CONTRACTOR MAY PROVIDE A STABILIZED OUTLET BY OMITTING THE SPECIAL STILLING BASIN AND PROVIDING THE ROCK PAD AS SHOWN WITH MINIMUM DIMENSIONS 10 FEET WIDE BY 15 FEET LONG.

WITH ROCK PAD

SHEETING, DIVERSION PIPES, PUMPS AND HOSES.

5. PUMPS AND HOSES SHALL BE OF SUFFICICIENT SIZE TO DEWATER

SEQUENCE OF CONSTRUCTION FOR TYPICAL WORK AREA

- 1. INSTALL SPECIAL STILLING BASIN(S).
- 2. INSTALL UPSTREAM PUMP AND TEMPORARY FLEXIBLE HOSE.
- 3. PLACE UPSTREAM IMPERVIOUS DIKE AND BEGIN PUMPING OPERATIONS FOR STREAM DIVERSION.
- PLACE DOWNSTREAM IMPERVIOUS DIKE AND PUMPING APPARATUS. DEWATER ENTRAPPED AREA, AREA TO BE DEWATERED SHALL BE EQUAL TO ONE DAY'S WORK.
- 5. PERFORM STREAM RESTORATION WORK IN ACCORDANCE WITH THE PLANS.
- 6. EXCAVATE ANY ACCUMULATED SILT AND DEWATER BEFORE REMOVAL OF IMPERVIOUS DIKES, REMOVE IMPERVIOUS DIKES, PUMPS, AND TEMPORARY FLEXIBLE HOSE. (DOWNSTREAM IMPERVIOUS DIKES FIRST).
- 7. ALL GRADING AND STABILIZATION MUST BE COMPLETED AT THE END OF EACH DAY WITHIN THE PUMP AROUND AREAS BETWEEN THE IMPERVIOUS DIKES. THE IMPERVIOUS DIKE LOCATIONS AS SHOWN ON THIS SHEET ONLY SHOW THE UPPER AND LOWER EXTENT OF WORK FOR EACH STREAM SEGMENT. THE CONTRACTOR IS RESPONSIBLE FOR DETERMINING THE LOCATION OF THE IMPERVIOUS DIKE(S) FOR EACH DAY'S WORK.
- 8. REMOVE SPECIAL STILLING BASIN(S) AND BACKFILL. STABILIZE DISTURBED AREA WITH SEED AND MULCH,

EcoScience Corporation

Raleigh, North Carolina

REVISIONS
LAND QUALITY
COMMENTS

Client:

Projec

BISHOP SITE STREAM / WETLAND RESTORATION PLAN

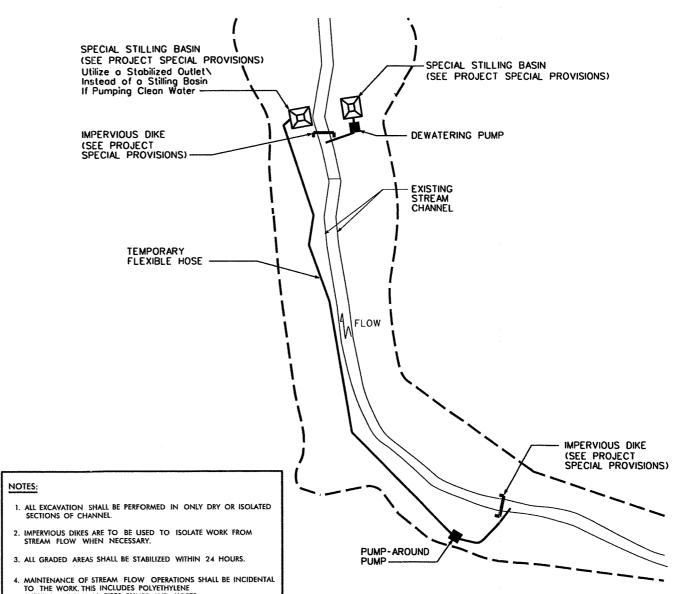
ANSON COUNTY, NORTH CAROLINA

Title:

GENERAL DETAILS

UT TO DULA THOROUGHFARE

Dan. By:		Dwn. By:	
	JDC		MAF
Ckd. By:		Dole:	
	DGM	JUN	2005
Scole:			


NO SCALE

ESC Project No.: 04-212

SHEET

C-2B

TYPICAL PUMP-AROUND OPERATION

SUMMARY OF QUANTITIES

a new without a con-	SUMMARY OF QUANTITIES Bishop Site Stream/Wetland Restoration - UT to Dula Thoroughfare				
ITEM	SPEC	ITEM DESCRIPTION	QUANTITIES	UNIT	
53	SP1	Mobilization	1	LS	
54	SP2	Construction Surveying	1	LS	
55	SP3	Grading	1	LS	
56	200	Select Tree Removal	25	EA	
57	1056	Filter Fabric, Type 2	6430	SY	
58	1605	Temporary Silt Fence	1380	LF	
59	SP15	Boulder, Header and Footer	120	TON	
60	1610	Stone for Erosion Control, Class A	2400	TON	
61	1610	Stone for Erosion Control, Class B	105	TON	
62	1610	Stone for Erosion Control, No. 4	14	TON	
63	1610	Stone for Erosion Control, No. 57	6	TON	
64	1615	Temporary Mulching	4	ACR	
65	1620	Seed for Temporary Seeding	260	LB	
66	1620	Fertilizer for Temporary Seeding	0.6	TON	
67	1630	Silt Excavation	50	CY	
68	1660	Permanent Seeding and Mulching	4	ACR	
69	SP6	Coir Fiber Matting, 900 gm	1000	SY	
70	SP8	Impervious Select Material	40	CY	
71	SP9	Pump Around Operation	1	LS	
72	SP10	Special Stilling Basin	4	EA	
73	SP12	Bare Root Seedlings	16531	EA	
74	SP14	Invasive Plant Removal	1	LS	
75	SP17	Disking/Scarification	2	ACR	

Estimates do include quantities for Class A stone and filter fabric for improved on-site access roads if required by weather conditions. The quantities are approximately 480 T of Class A Stone and 1333 SY filter fabric per 1000 linear feet of 12-foot wide improved access road as shown on the plans. Note that all quantities are estimates for infomation and bid comparison purposes only.

SUMMARY OF EARTHWORK QUANTITIES IN CUBIC YARDS

UT to DULA THOROUGHFARE

V4:	Total	Cut	EXCAVATION	Total Fill		FILL	BORROW	MASTE	
Xsection	sq ft	cu ft	ENCAVATION	sq ft	cu ft	cuft + %	1 11	BORROW	*****
0	1.3	0		15.0	0				
991	1.3	1288.3	48	15.0	14865.0	17838	661	613	0
		1288	48		14865		661	613	0
		<u> </u>					***************************************		-613
P	roject Tota	al	48		1				-613

APPROXIMATE QUANTITIES ONLY. UNCLASSIFIED EXCAVATION, BORROW EXCAVATION, FINE GRADING AND CLEARING AND GRUBBING WILL BE PAID FOR AT THE CONTRACT LUMP SUM PRICE FOR "GRADING." A SHRINKAGE FACTOR OF 1.2 WAS ASSUMED.

REVISIONS QUANTITIES REVISED

Client:

Project:

BISHOP SITE STREAM / WETLAND RESTORATION PLAN

ANSON COUNTY, NORTH CAROLINA

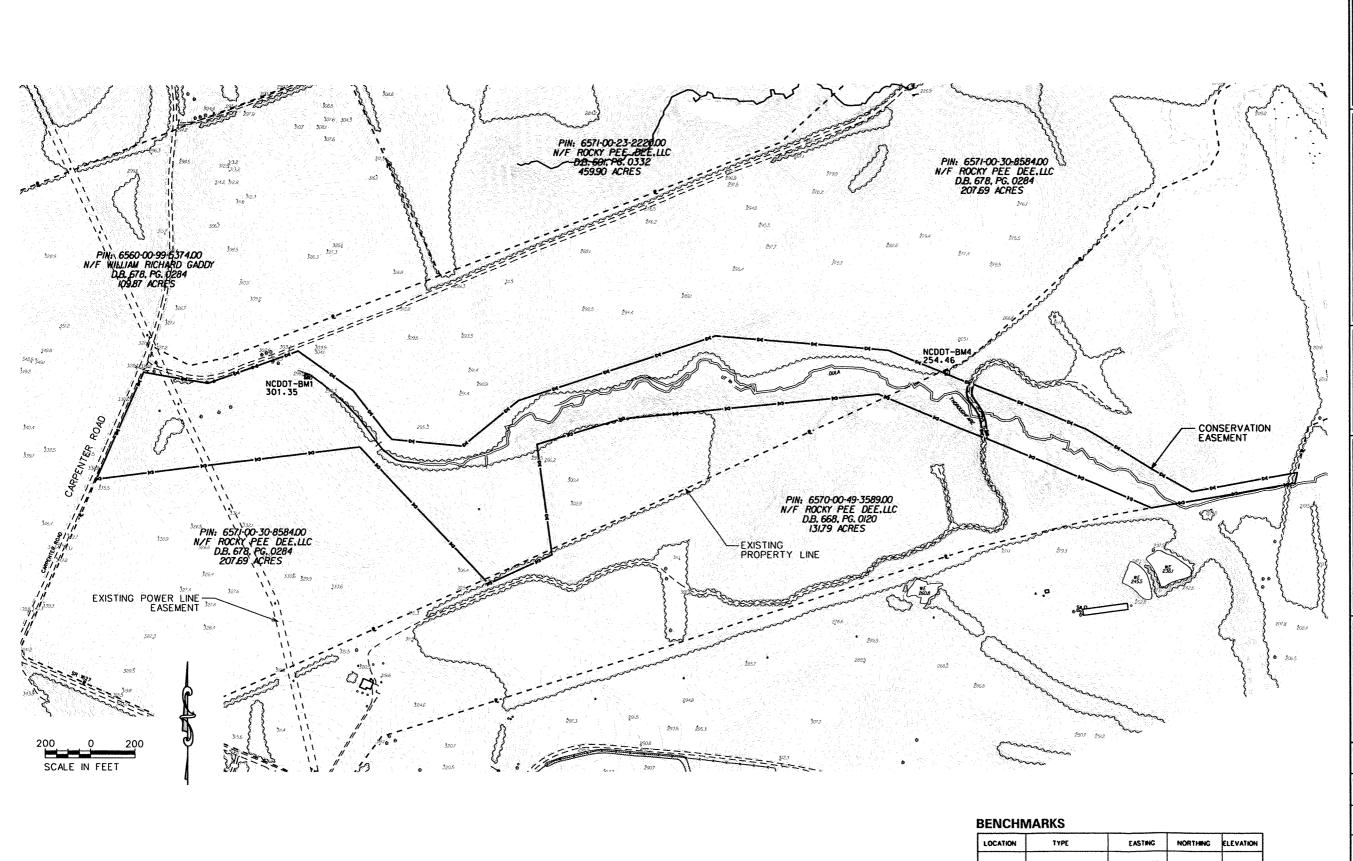
Title

SUMMARY OF QUANTITIES /
SUMMARY OF

UT TO DULA THOROUGHFARE

EARTHWORK

Osn. By:		Dwn. By:	
	JDC		MAF
Ckd. By:		Dote:	
	DGM	JUN	2005
Scole:			


NO SCALE

ESC Project No.:

04-212

SHEET

C=3

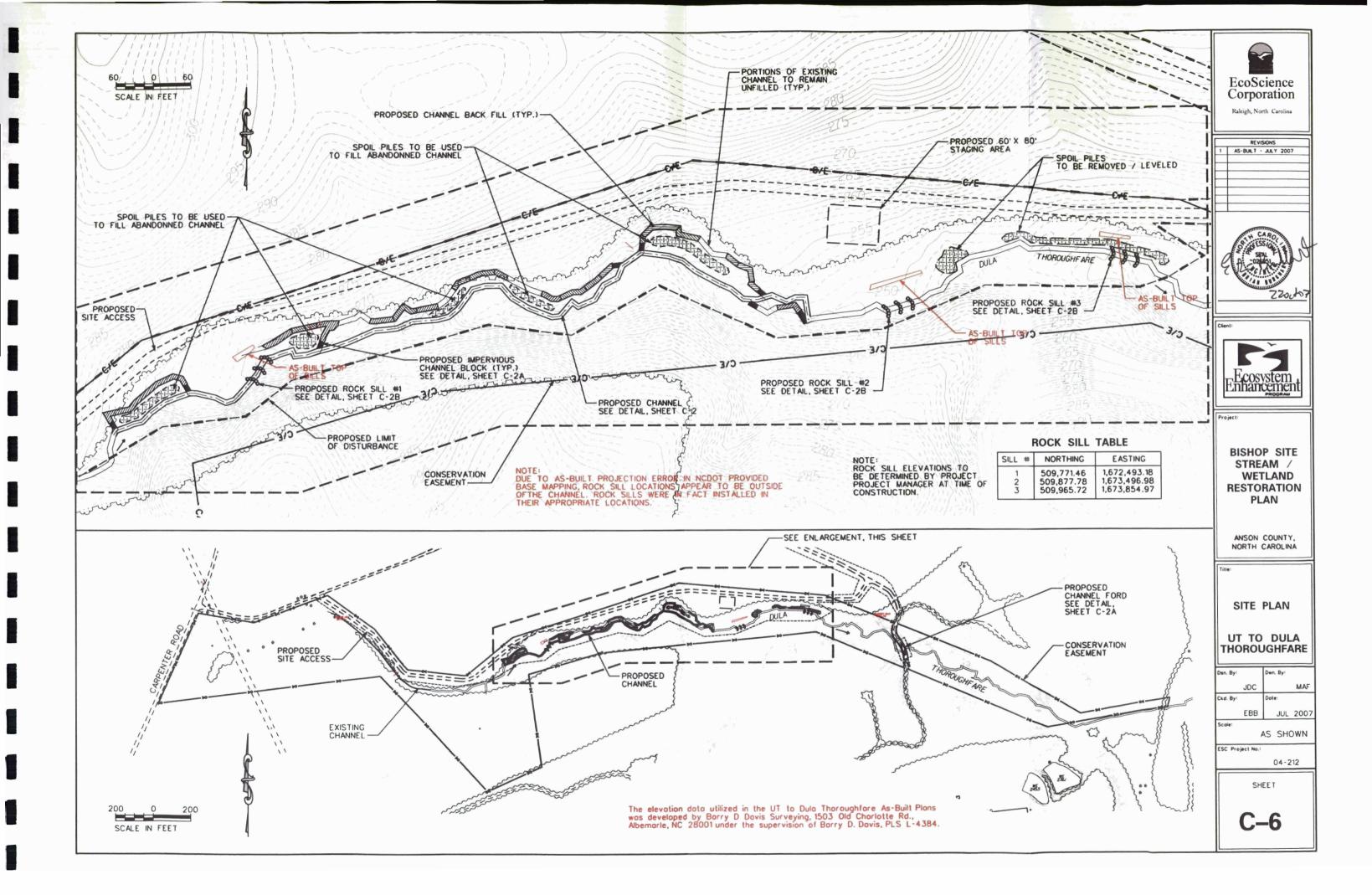
LOCATION	TYPE	EASTING	NORTHING	ELEVATION
NCDOT BUI	RR SPIKE IN TREE	1671382.477	509938.956	301.35
NCDOT BW4	RR SPIKE IN TREE	1674222.110	509949.013	254.46

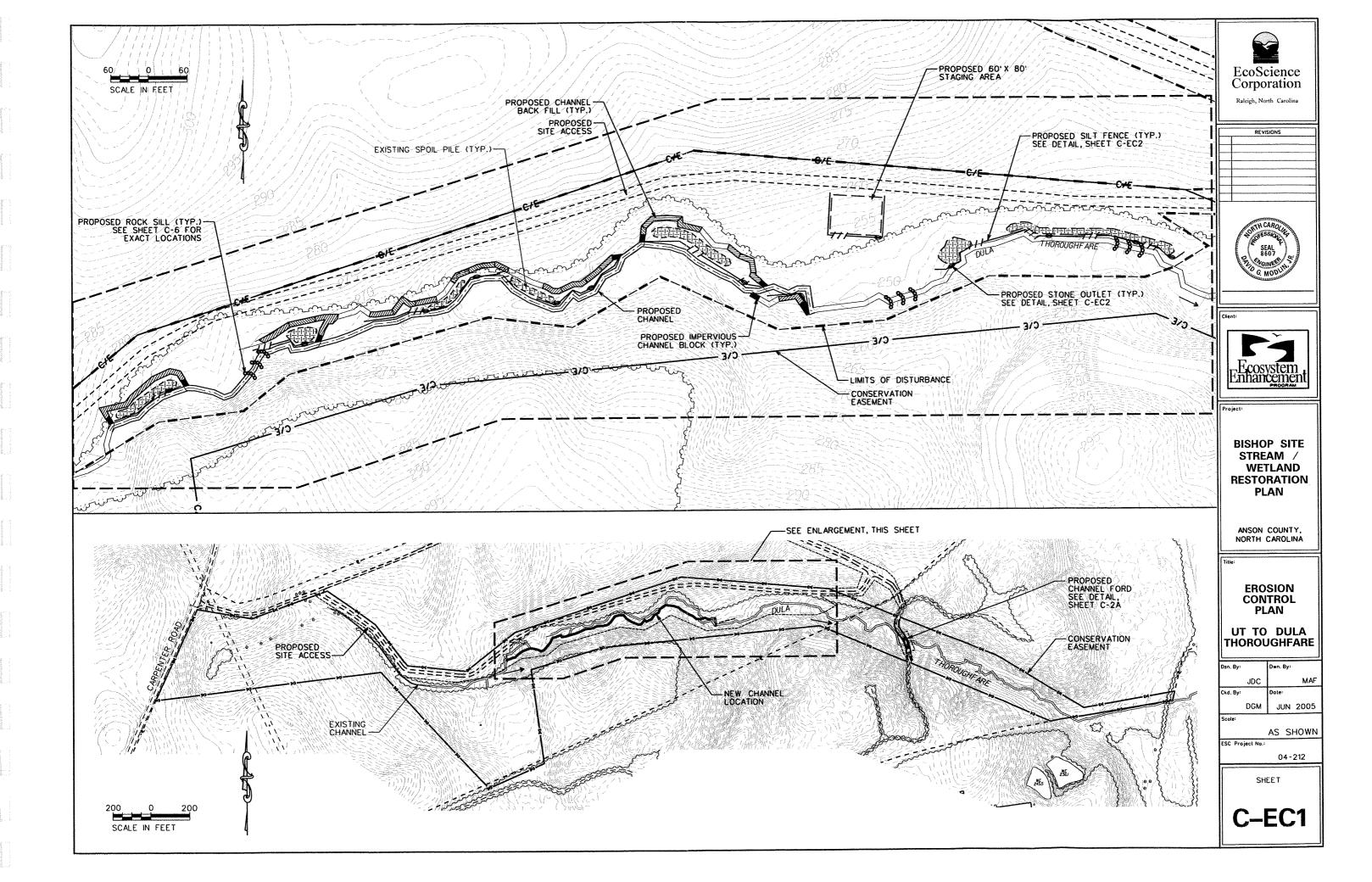
 REVISIONS		

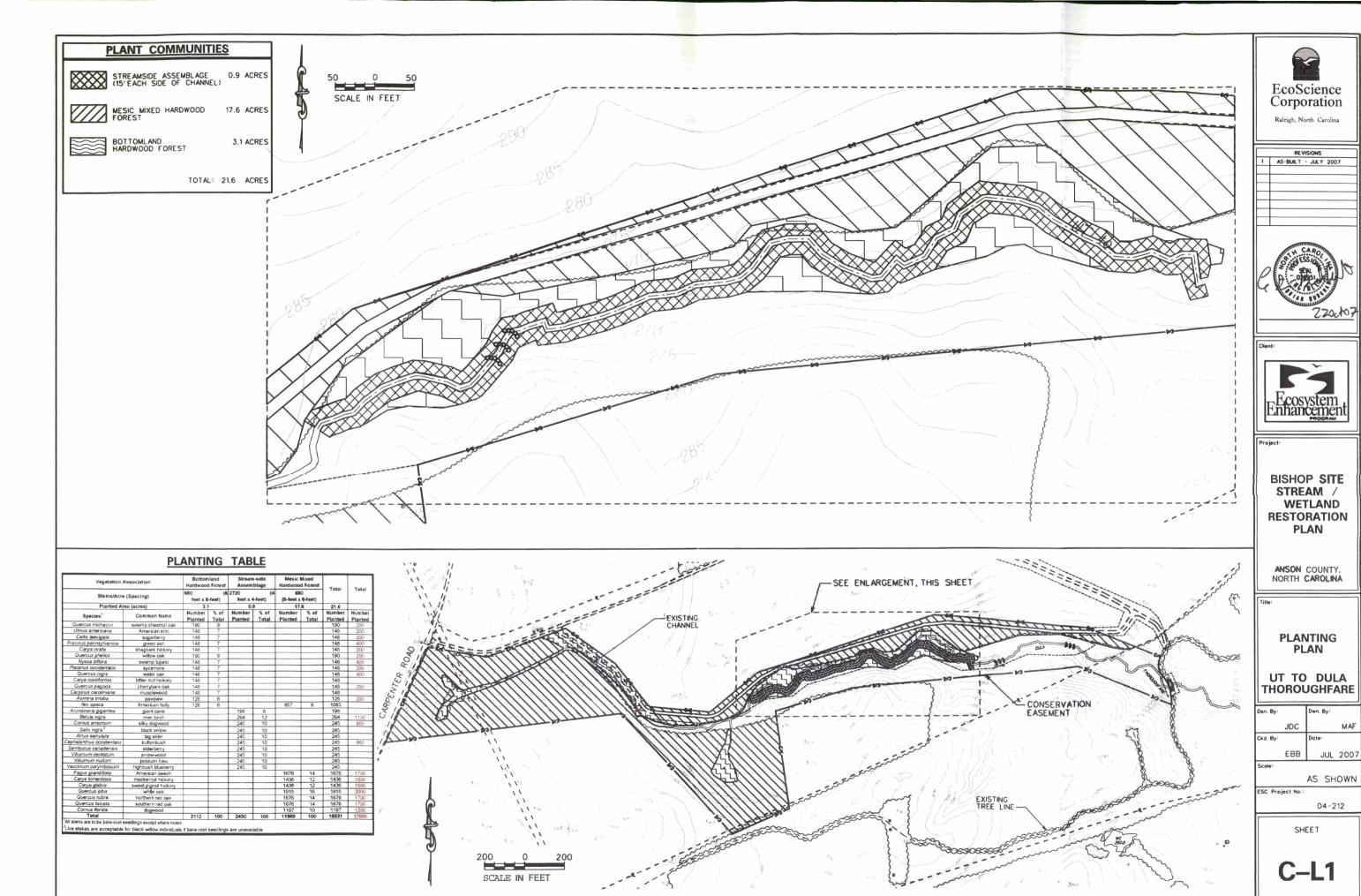
BISHOP SITE STREAM / WETLAND RESTORATION **PLAN**

ANSON COUNTY, NORTH CAROLINA

EXISTING CONDITIONS


UT TO DULA THOROUGHFARE


Osn. By:		Dwn. By:
	JDC	MAF
Ckd. By:		Date:
	DGM	JUN 2005
Scale:		AS SHOWN


ESC Project No.:

04-212

SHEET

